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ON THE LAW OF LARGE NUMBERS FOR FUZZY NUMBERS
R.Z. Salakhutdinov
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This paper deals with some new rezult about
the law of large numbers for fuzzy numbers
in the framework of theory possibility
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1. Introduction. In the framework of theory possibility Zadeh,
R.Fuller [31 is shown that if &1, £2,... are fuzzy number of
triangular form with common width o and t-norm is weaker than the
Hamacher’s operator with zero parameter, then this sequense obeys
the law of large numbers for fuzzy numbers (see further theorem 1).

Note that a triangular fuzzy number ¢ denoted by (m,a), and
its membership function defined as £(x) = 1 - [x-m|/a, if m-a < X <
m + o«; otherwise £(x) = 0. Here o - is its width; m - is its modal
values; (>0, -® < m < ©). Now, the grade possibilty of the state-
ment: " [a,bl contains the value of &" is defined as Pos(ate<b) =

= Sup £(x); Necessity: as Nes(a<#<b) = 1 - Pos(&<a, £>b).

a<x<b
Function T: [0;1] x [0;11 - [0;11 is t-norm, if T is commutative,
associative, non decreasing and T(0,1)= 0, T(1,1)=1. As a examples
of t-norms are Hamacher’s (Hr) and Dombi’s (Dq) operators [<l:

() - uv | Da(u,v)- <1+ [( 1:3 )q+ ( 1:1 )q ]1/q>‘1

r+(1-r) (u+tv-uv) u \'
0 a>0
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Let3a1, ¢o are fuzzy numbers. Then their T-sum denoted by (&1+&2)T

and its membership function defined by:

(g1tg2)T(2) = sup T(21(x), &£2(¥))
X+y=2
Obviously, that for a tasks of applicable character it 1is
interesting to study the behavior of the T-sum of fuzzy nambers
Sn = ((g4+go+...+€n)/N)T When n » =,
Theorem 1. [3] If T € Hg, &i= (Mj,o), then for any 8>0

g1+g2t.. . *&n

mi+mo+. . . +Mnp
) < Mn+3] -1, Mgy
T

Lim Nes [Mn-B < (

n-—-» o n n

Because T(u,v) < min(u,v), then the question about acting the

low of large numbers for T < min has been steel opened [3].

Results.
Theorem 2. If T < min, &;= (Mj,o), then for any 8>0

g1tEot. . . +En
) < Mn+B] =1
T

Lim Nes [Mn—B;K (
n-—» o

n

Proof. Let 0<B<o, else when B>a then we get trivial case. Let
T=Dy. After correspoding calculation we established that membership

function of the T-sum Sp will be following:

1 - 'Z_Mnl/d .
Sn(z) = 7 , if |z-Mp| € o
1+ (n*"9 - 1) |z-Mpl| /o

Sn(z) = 0, if |z-Mp! » «

From this Nes(|Sn-Mnl€ 8) = 1- Pos(|Sn-Mnl> 8) =
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(z) 1 -
T 1+(n1’9 -1)p/a

]

£1+E2%. . . +&n 1 - p/a
-1 s )

|z-Mn|>8

Thus we get Lim Nes(|Sn-Mnl< 8) = 1

n -» o

Now, taking into consideration that Hoo€ H1&...&€ Hg = D1<€ Do«
..€ Dog = min, we convincing in true of affirmation this theorem.

Extrat from Theorem 2 the most interesting corollaries.

Corollary 1. When q = 1, then from theorem 2 as a corollary
follows the proposition of theorem 1.

Corolarry 2. If T(u,v) = min(u,v), ¢&ij= (Mj,a), then for any
0< B < o the law of large numbers is not true.

Proof. If q » o, then T(u,v)=Don(u,v) = min(u,,v), and conce-
quently Nes(|Sp-Mnl<€ 8) = 8/d.
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