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Abstract. The main purpose of this paper is to introduce and study introduce and
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by the algorithm.
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1. Introduction

It is well known that variational inequalities, introduced by Hartman and Stampacchia
[15] in the early sixties, are a very powerful tool of the current mathematical technology.
Variational inequalities have been extended and generalized to study a wide class of problems
arising in mechanics, physics, optimization and control, nonlinear programming, economics
and transportation equilibrium and engineering sciences etc. Quasivariational inequalities
are generalized forms of variational inequalities in which the constraint set depends on the
solution. For details we refer to [1, 2, 4, 6, 30, 35].

In 1989, Chang and Zhu [13] were first to introduce and study a class of variational
inequalities for fuzzy mappings. Recently, several kinds of variational inequalities and com-
plementarity problems for fuzzy mappings were considered by many authors (see[6, 7, 12,
19, 20, 23, 28, 29, 33, 34]).



53

In 1991, Chang and Huang [8, 9] were first to introduce and study some new class of
complementarity problems and variational inequalities for set-valued mappings with compact
values in Hilbert spaces. In the recent paper (16], Hassouni and Moudafi studied a new class
of variational inclusions, which included many variational and quasivariational inequalities
considered by Noor [31, 32], Isac [27], Siddiqi and Ansari (36, 37] as special cases.

On the other hand, the random variational inequality and random quasi-variational
inequality problems have been introduced and studied by Chang [6], Chang and Huang [10,
11], Chang and Zhu [14], Huang [24, 25), Husain, Tarafdar and Yuan (26], Tan, Tarafdar
and Yuan [39], Tan [38] and Yuan [40]. v +

Recently, the author [21, 22] were first to introduce and study the random complemen-
tarity problems, random quasivariational inequalities and random variational inclusions for
random fuzzy mappings.

In this paper, we introduce and study a new class of random generalized nonlinear qua-
sivariational inclusions for random fuzzy mappings and construct a new iterative algorithm
for this kind-of quasivariational inclusions. We also prove the existence of random solutions
for this class of random quasivariational inclusions and the convergence of random iterative
sequences generated by the algorithm. :

2. Preliminaries

Throughout this papet, let (Q, A) be a complete o-finite measure space and H be a
separable real Hilbert space endowed with a norm Il -1l, and inner product (-, -). We denote
by B(H), 27, CB(H) and H(-,") the class of Borel o-fields in H , the family of all nonempty
subsets of H, the family of all nonempty closed bounded subsets of H and the Hausdorff
metric on CB(H), respectively.

Definition 2.1. A mapping z : @ — H is said to be measurable if for any B €
B(H), {teQ: z(t)e B} € A.

Definition 2.2. A mapping T : Q x H — H is called a random operator if for any
¢ € H, T(t,z) = z(t) is measurable. A random operator T is said to be continuous if for
any t € Q, the mapping T'(t,-) : H — H is continuous.

Definition 2.3. A set-valued mapping V : @ — 27 is said to be measurable if for any
BeB V}(B)={teQ: V(t)nB #£0} € A

Definition 2.4. A mapping u: Q — H is called a measurable selection of a set-va.lued.
measurable mapping V : Q@ — 2¥ if y is measurable and for any t € Q, u(t) € V(¢).

Definition 2.5. A mapping V : Q x H — 2¥ is called a random set-valued mapping if
for any ¢ € H, V (-, z) is measurable. A random set-valued mapping V : Q x H — CB(H)
is said to be H-continuous if for any t € Q, V(t,-) is continuous in the Hausdorff metric.

Let N be any set and F(H) be a collection of all fuzzy sets over H. A mapping F
from N into F(H) is called a fuzzy mapping. If F is a fuzzy mapping on H, then for any
¢ € N, F(z)(denote it by F, in the sequel) is a fuzzy set on H and F,(y) is the membership
function of y in F,.
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Let M € F(H), q € [0,1]. Then the set
(M)g={z € H: M(z) 2 q}

is called a g-cut set of M.

Definition 2.8. A fuzzy mapping F : @ — F(H) is called measurable, if for any given
a € (0,1], (F(-))a : @ — 27 is a measurable set-valued mapping.

Definition 2.7. A fuzzy mapping F : Qx H — F(H) is called a random fuzzy mapping,
if for any given z € H, F(-,z) : @ — F(H) is a measurable fuzzy mapping.

Obviously, the random fuzzy mapping includes set-valued mapping, random set-valued
mapping and fuzzy mapping as the special cases. '

Let T, A : Q x H — F(H) be two random fuzzy mapping§ satisfying the following
condition (I): .

(I) There exist two mappings a, b: H — (0, 1] such that

(Tt2)a(z) € CB(H), (At,z)o(z) € CB(H), Y(t,z) € Qx H.

By using the random fuzzy mappings T and A, we can define two random set-valued
mappings T and A as follows:

T:Qx H~ CB(H), €+— (Tt.z)az), Y(t,z) € QxH,

A:Qx H— CB(H), ¢ (Aez)ya), Y(t,z)€Qx H.

In the sequel, T and A are called the random set-valued mappings induced by the random
fuzzy mappings T and A, respectively.

Given mappings a, b : H — (0, 1], random fuzzy mappings T, 4 : Q@ x H — F(H) and
random operators f, p, ¢ : @ x H — H. Suppose ¢ : H x H — RU{+0c0} such that for each
fixedy € H, ¢(-,y) : H — RU {+00} is a proper convex lower semicontinuous function on
H and Img (] dom(8¢(-,y)) # 0 for each y € H, where 8¢(-, y) denotes the subdifferential
of function ¢(-,y). We consider the following problem:

Find measurable mappings u, w, y : @ — H, such that for allt € Q, v € H,

Touey (w(1)) 2 a(u(t)), Aruqn(v(t)) 2 b(u(2)),
9(t, u(t)) () dom(dp(- u(®))) # 0, (2.1)
(& w(e) = p(t, 91, v = 9(2,u(2))) 2 lg(t, uld)), u(d)) — o(v, u(z)). ~

This problem is called a random generalized nonlinear quasivariational inclusion for random
fuzzy mappings.

If o(z,y) = ¢(z) for all y € H, then the problem (2.1) is equivalent to finding measurable
mappings u, w, ¥ : @ — H, such that forallt € Q, v € H,

Tt uiey (w(t)) > a(u(t)), Aeuey(v(t)) > b(u(t)),
9(¢, u(t)) N dom(dyp) # 0,
(f@ w(t)) — p(t, y(t), v — g(t, u(t))) > o(g(t, u(t))) — ¢ (),

(2.2)
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which is called a random generalized nonlinear variational inclusion for random fuzzy map-
pings considered by Huang [22].

If T and A are two random set-valued mappings, and a(z) = b(z) = 1, Vz € H, then
the problem (2.1) is equivalent to finding measurable mappings u, w, y : @ — H, such that
forallt e, v e H,

w(t) € T(¢,u(t)), y(t) € A(t,u(t)), 9(t,u(t)) N dom(de(-, u(t))) # 0, }
(f(t, w(®)) = p(t, y(2)), v = g(t, u(t)) 2 w(g(t, u(t)), u(t)) — @ (v, u(t))

and the problem (2.2) is equivalent to finding measurable mappings u, w, y : @ — H, such
that forallt € Q, v € H,

w(t) € T(t, u(t)), y(t) € A(t,u(t)), g(¢,u(t)) ) dom(dp) # 0, }
(£t w(®)) = p(t, y(2)), v — g(t, u(®))) > @(9(t, u(®))) = (v),

(2.3)

(2.4

It is clear that the random generalized nonlinear quasivariational inclusion (2.1) includes
many kinds of variational inequalities and quasivariational inequalities of (6, 8-11, 16, 18,
20-22, 24, 25, 27, 31, 32, 34, 36, 37] as special cases.

3. Random Iterative Algorithm

We first give the following lemmas.

Lemma 38.1.(Chang [5]) Let V : Q@ x H — CB(H) be a H-continuous random set-
valued mapping. Then for any measurable mapping u : Q@ — H, the set-valued mapping
V(,u()): @ — CB(H) is measurable.

Lemma 3.2.(Chang [5]) Let V, W : Q@ — CB(H) be two measurable set-valued map-
pings, € > 0 be constant and u: Q@ — H be a measurable selection of V. Then there ezists a
measurable selection v : Q@ — H of W such that for allt € Q,

llu(®) = v()Il < (1 + QH(V (), W(2)).

Lemma 3.3. Measurable u, w, y : @ — H are a solution of problem (2.1) if and only if
for allt € Q, w(t) € T(t,u(t)), y(t) € A(t,u(t)) end

9(t,u()) = TEGH D (gt u(®) - at)(F(t,w(2)) - p(t, ¥()))), (3.1)
where a : Q — (0,0) is a measurable function and J:((‘;iu(“)'z (I+ a(t)e(-,u(t)))"?! is the
so-called prozimal mapping on H.

- Proof. From the definition of J:((t‘i"(')) one has

9t u(?)) — a(t)(f(t, w(t)) - p(t, y(2)) € g(t, u(t)) + a(t)Op(-, u(t))(g(t, u(t))), ¥t € N,

hence
p(try(t)) - f(t1w(t)) € a()a('vu(t))(g(t?u(t)))’ vt € Q.
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From definition of d¢(:, u(t)) we have
e(v,u(t)) 2 e(g(t,u(®)), u(®)) + (p(t, y(2)) ~ f(t, w(t)),v - g(t,u(t))), Yve H, VteQ.

Thus u,w and y are a solution of (2.1). O

To obtain an approximate solution of (2.1) we can apply a successive approximation
method to the problem of solving

u(t) € F(t,u(t)), VteqQ, (3.2)

where

F(t,u(t) = u(t) = 9(t, u(®)) + T35 (98, u(e) ~ a@)(£(6, T2, u(e)) - (2, Ak, u(t))))).

Based on (3.1) and (3.2), we proceed our algorithm.

Suppose that T, 4 : @ x H — F(H) be two random fuzzy mappings satisfying the

condition (I). Let T,A:QxH — CB(H) be two H-continuous random set-valued mappings

induced by T, A4, respectively, and f, p, g : @x H — H be continuous random operators. For

any given measurable mapping ug : @ — H, the set-valued mappings T( ug(+)), A( up(+)) :

! — CB(H) are measurable by the lemma 3.1. Hence there exist measurable selection
Q0 — H of T(-,uo(+)) and yo : @ — H of A(-, uo(+)) by Himmelberg [17]. Let

uL(t) = uo(t) — g(t, uo(t)) + I (g(t, uo () = a(t)(F (¢, wo(t)) — B(2, wo(2)))).

It is easy to see that u; : @ — H is measurable. By Lemma 3.2, there exist measurable
selections wy : Q@ — H of T(t,u;(t)) and y; : @ — H of A(t, u,(t)) such that

lws(®) = wo)Il < (1+1) H(T(t, ua(t)), T(t, uo(t)), Vt € @,

lv2(8) = o)l < (1 + 1) H(A(t, us (1)), A(t, uo(t))), ¥t € Q.
Letting

uz(t) = wa(t) = gt ua(8) + TG D (g(1, (1)) ~ @) (F (2, wi () — Pt 1 (2)))),
then us : @ — H is measurable. By induction we can obtain our algorithm as following.

Algorithm 3.1. Suppose that T, A : Q x H — F(H) be two random fuzzy mappings
satisfying the condition (I). Let T, A : @ x H — CB(H) be two H-continuous random
set-valued mappings induced by T, A, respectively, and f, D, g:0Qx H— H be continuous
random operators. For any given measurable mapping up : @ — H, we can get an algorithm
for (2.1) as follows:

Uns1(t) = un () = (¢, un(t)) + TE D (g(2, un (1))
- a(@)(f(twa(®) - p(t, v (D)), |
wn(t) € T(t,un (1)), valt) € Alt, un(2)), (3.3)
lwn+2(t) = wa (Ol S (1+ (14 0)7Y) BTt wn41(8)), T(2, ua (1)),
Hyner(®) = Ol < (L4 (1 +1)71) HAL, uns1(2)), At wa (2))),
foranyte€Q andn=0,1,2,---

Remark 3.1. The algorithm 3.1 includes several known algorithms of [6, 8-11, 16, 18,
20-22, 24, 25, 27, 31, 32, 34, 36, 37] as special cases.



57

4. Existence and Convergence

Definition 4.1. A random operator g : 2 x H — H is said to be

(i) strongly monotone if there exists some a measurable function 6 : £ — (0,00) such
that - :
(9t u1) = g2, uz), uy = ua) > 6(t)|uy — wali?, Vu; € H, i=1,2, Vt € Q. _

(ii) Lipschitz continuous if there exists some measurable function o : @ — (0, 00) such
that
“g(tvul) - g(t’ UZ)” S a(t)”ul - ’U.g”, Vui € H1 1= 172: vt € Q.

Definition 4.2. A random set-valued mapping T : Q@ x H — CB(H) is said to be

(i) strongly monotone with respect to a random operator f : 2 x H — H if there exists
some measurable function 8 : @ — (0, c0) such that

(f(t,w1) = f(t,wa), ur = u2) > B(t)|Juy — us))®, Yt € Q, Yu; € H, Yuw; € T(t,w), 1 =1,2.

(ii) H-Lipschitz continuous if there exists some measurable function v : Q — (0, ) such
that
H(T(twul)vT(tvuZ)) < ‘Y(t)”ul - u’-’”) Vu, € H, 1 =1,2.

Theorem 4.1. Let g : Q@ x H — H be strongly monotone and Lipschitz continuous
random operator, f,p : @ x H — H be Lipschitz continuous random operators, T, A :
Qx H — F(H) be two random fuzzy mappings satisfying the condition (I). Let T, A :
'x H — CB(H) be two random set-valued mappings induced by T, A respectively. Suppose
that f, Aare H -Lipschitz continuous and T be strongly monotone with respect to f. Suppose
there ezists a measurable function £ : Q — (0, +00) such that for each z,y,z € H, t € Q,

v (-,x Ael-,
172652 (2) = T2ES P2 < e@®)le - wl).

If the following conditions hold:

B(t) + e()u(t)(k(t) - 1) < V(B + (k(t) - 1)e)u(®))? - i(2)
2 ()73 () — 2(t)u?(t) ()2 (t) - e(t)u?(t) ’
B() > (1= k(®))e(t)u(t) + VI(t), n(t)v(t) > e(t)u(t), (4.2)
1(t) = (P73 () — ()’ EkEN2 - k(2)), a()p(t)et) < 1 - k(t), (4:3)
k(t) = £(t) + 2/1 - 26(t) + o2(t), k() < 1, (4.4)

a(t) —

(4.1)

for allt € Q, where B(t) and 6(t) are strongly monotone coefficients of T and g, respectively,
¥(t) and u(t) are H-Lipschitz coefficients of T and A, respectively, o(t), n(t) and €(t) are
the Lipschitz coefficients of g, f and p, respectively, then there exist measurable mappings
U, w, y: Q2 — H such that (2.1) holds. Moreover,

un(t) = u(t), wa(t) = w(t), yat) = y(t), n — oo,
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where {u,(t)}, {wa(t)} and {y, (t)} are defined as in Algorithm $.1.

Proof. From (3.3), for any ¢ € 2, we have

lunsi(®) —un(t))| = l[un () — tun—q(t) - (9(t, ualt)) - 9(t, un—1(2)))
L B @) ~ TG O (b, v )
where
h(t7 un(t)) = g(t’ ’U.-,,(t)) - Ot(t)(f(t, wﬂ(t)) - p(t) y,:(t))).

Also, we have

17205 (Bt un (@) = TEG D () _

172057 (e, w1 (8))) = TG D e, L )]

+ I B un (1)) = T2 Bty umos ()]

EOlun(®) = wn_s Ol + 1At wa (2)) = A2, un_y ()] |

EOMun(®) = w2 (] + e (8) ~ v 8) = @)t 0 (2)) — (2, wn—s (1))

+ ”un(t) - un—l(t) - (g(un(t)) - g(trun—l(t)))”
+alp(, va(2) - p(t, -1 (1))]], Vt € Q.

IN

IN N

That is

[t 41(2) = u, (2))]

S O (®) = w1 ()] + 2llun (2) = wn_y(2) - (9(t, un(2)) = g(t, un_s (1))
Hllun () = un1 () = «(&)(F (2, wa(t)) - F& wam s D)
+a®)lp(t v (1) ~ p(t, yu-1 (D))]l, V2 € 0. (4.5)

By Lipschitz continuity and strongly monotonicity of g, we obtain

llun (8) = w1 (8) = (9(t, un (2)) — 9@t ua—1 ()3
< (1-26(8) + o (1)) |fun(t) - un-1(8)|]%, Vt € Q. (4.6)

Also from H-Lipschitz continuity and strongly monotonicity of f, and Lipschitz continuity
of f, we have

1 (®) = un—1(2) = a(t)(f(t, wa(t)) - F@t way(8))) :
S (1-280)at) + o (t)n?(t)(1 + nT2 Y O)un(t) = waa (B)]2, Ve € Q. (4.7)

By H-Lipschitz continuity of A4, Lipschitz continuity of p and (3.3), we know
2(Ollp(t, yn(£)) = p(8, Yn-1 ()| < a(t)e(t)(1 + 2" u)un(t) ~ un-s (2)]], ¥t € 0. (4.8)
Combining (4.5)-(4.8), we have

un1() = un ()] < O (®llun () = wams(B)], V2 € @,
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where
Ou(t) = &) +2vV1-26() + 0%(2) + V1 - 28(t)a(t) + <2 ()12 (E)(1 + n- )22 (1)
+ a(t)e(t)(1 + n™Hu(t).
Letting

8(2) == £(t)+2/1 — 26() + o2(t)++/1 = 26(t)a(t) + a2 ()2t () +a(t)e(t)u(t), Yt € Q.

we know that 4,(t) \ 8(t), for all t € Q. It follows from (4.1)-(4.4) that 6(t) < 1, for all
t € Q. Hence, for any t € Q, ,(t) < 1, for n sufficiently large. Therefore {un(t)} is a Cauchy
sequence and we can suppose that u,(t) — u(t), for all ¢t € Q.

From (3.3), we get

lwn(®) = waca @ < (1407 (0) lun(t) — wn-a(0)f, Ve €,
[92() = gm-1 (DI < (14+n7")p() flun(t) = un-1(t)]], Ve € 9.
So {wn(t)} and {yn(t)} are both Cauchy sequences. Let wa(t) = w(t) , yn — y(t). Since

{un ()}, {wa(t)} and {y.(t)} are sequences of measurable mappings, we know that u, w, y :
Q? — H are measurable. Further, for any ¢t € ), we have

d(w(?), f(t, u(t))) inf{jlw(t) - z||: z € f(t, u(t))}
lw(t) = wa ()] + d(wa(2), T (2, u(t)))
lw(t) = wa (&)l + B(T(t, ualt)), T(t, ult)))

llw(®) = wa DI + ¥ () lun () = w(@)]| — 0.

Hence, w(t) € f(t,u(t)), for all ¢t € Q. Similarly, y(t) € Z(t,u(t)), forallt € Q. O

Remark 4.1. For a suitable choice of the mappings g, T, A, f, p and the function o,
we can obtain several known results [6, 8-11, 16, 18, 20-22, 24, 25, 27, 31, 32, 34, 36, 37]
as special cases of the main result of this paper.
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