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Abstract: In the sense of the convex fuzzy mapping given by Nanda (1), we define the lower semi con-
tinuous fuzzy mapping and the continuous fuzzy mapping in this paper. And on the n — dimensional
Euclidean space, we obtain an important result which the convex fuzzy mapping is continuous fuzzy

mapping on its relative interior.
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1 Introduction

The concept of convex fuzzy sets were originally introduced by L. A. Zadeh (2].
Subsequently a lot of scholars did a great deal of work at the aspects of their theories and
applications. Some properties of convex fuzzy sets were studied and given by Brown (3],
Katsaras and Liu (4], Lowen (5). The concept of the convex fuzzy mapping has first
been introduced and some results including some applications to nondifferentiable optimiza-
tion have been investigated by Nanda (1] . But the theories of the continuity question on
convex fuzzy mapping have not been discussed up to now. In this paper, we will study
them. For simplicity, we consider only the convex fuzzy mapping defined on the Eu-
clidean space R" , But it is not difficult to generalize the results obtained here to the case

that convex fuzzy mapping are defined in a linear space over the real or complex field.

2 Preliminaries

Throughout this paper, let R be the set of all real numbers.
Let I = la =[la,a’)l1a<a",a,a" € R}. The elements in the set I are

called interval numbers. On the I, , we make following definitions.
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For everyc—z, b€ I and E = (a,a*), b = [b_'bJ'],

+ b (a™+ b ,a"+b%), ka = (ka™, ka*), Whenever k =0
b= ((a—b)A(a*-0"),(a"=b7)V (a"=5")],

<5 e <b, a'<ba=0b iff a"=b67,a"= b*,

<b iff a<b and aF#Db,

IS SIS A NN

Evidently, we obtain @ (a+b)-b=oa,. a -a =0= (0,0)
@ k(a +b) = ka + kb, Whenever k =0

Let p(a@,5) =max{l a =61, | a"= &1}, Clearly, ('IR,p) is a ('Hausddrff)

metric space.

For a sequence of interval numbers {@,! C I, We say that a, —~> a(n — ) if

there exists a @ € I such that p(a,, 2) = 0(n — o). Obviously we say a,~>a(n—>)

or lim &, —axffa —a andal > a*(n—> ).

n—>00

(0,1

vonR.

iffA

Let A R — (0,1) . If there exists an -730 € R such that A(xo) = land foranyA € =
], thecut~set A, = {x € R | A(x) = A} € I;. Then we call A a fuzzy number

simply write as A, = (A}, A;) . We denote all fuzzy numbers on R as F(R) .
For A,B € F(R),k =0, we define '
A(E) if R0
(RA)(z) =1 4 forz =0 if k=0
0 forx #0 if k=0

A<B iff A <B for any A € (0,1) 3 v
A<B iff A <B, ad A;# B, for any A € (0,1) ;
A+xB=C where C, = A, B, for any A € (0,1) .

Evidently, we have (A + B) ~B = AandA - A = (~) , At the same time, A << B
1 z =0

0 z7#0
By above definitions, we are not difficult to get the following propositions.

- B <(~)holds.where(~)(x) = {

Proposition 2.1 Let A, B € F(R) , Then the following conclusions hold.

(1)For any A € (0,1, if £ =0, then (kA), = kA,.

(2)If A<<Bandk =0, then RA < kB .

(3)If £ =0, thenk(A + B) = kA + kB .

(O k, L >=0,then (kl)(A) = k(IA) .

Finally, define a mapping p:’F (R) x F(R) — (0, ) , and by the rule
;(A, B) = Sap, p(A,, B,). It is straightforward to see that (F(R), <) ’

constitutes a partial ordered set, and p is a metric in F (R) .
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For a sequence of fuzzy numbers {A,} C F(R),A € F(R). We say that {A,}is
convergent to A iff ;(An, A)**O (n—>00). Simply write as lim A, = A or A,~A (n—>)

. Evidently, A, —->A(n—>0°)1ff(A D ’A;and(A")IaA:(n»OO)forany,l €
(0,1).

Proposition 2.2 Let two sequence of fuzzy numbers {A,,;, 3Bn§ C F(R),A,B €.
F(R). andlim A, = A,lim B, = B. If A,<B,,n=1,2,3, -:-. Then A<<B.

700 n—e00

3 Continuity of the convex fuzzy mapping

- This section is the centre of this paper. We first define the concept of the lower semi
continuous fuzzy mapping and the continuous fuzzy mapping. Furthermore, we conclude
that the convex fuzzy mapping defined on the Euclidean spacé R" is the fuzzy continuous.

Let R" always denote the n — dimensional Euclidean space. The subset M C R" is
called an affine set implies that forallz,y € M, YA € R, (1 - )z + Ay € M holds.

Let S C R" . We call the smallest affine set containing S an affine hull of S. Write
asaff S. i.e., aff S = {M | M are affine sets. and S C M C R"} .

Definition 3.1(7) Let M C R", x € M. z is called a relative inner point of M . if there
exists € > O such that B(x, ¢) (| aff M C M. Where B(z, €) is an open sphere on R" .
The set constituted by all relative inner points of M is called the relative interior of M .

Write as riM . i.e., riM = {x € M | there exists € > 0 such that B(z,e) ) aff M C
M.

Lemma 3.1(7) Let M be a nonempty convex subset in R". Then y € riM iff for any r
€ M, there exists a @ > 1such that (1 - a)xz + ay € M.

Definition 3.2 Let 2 C R" be a convex set, and f : 2 — F(R) be a fuzzy mapping.
Then f is said to be a convex fuzzy mapping if for any z,y € 2, and A € [O 1) implies
FUL =)z + Ay) < (1 - 2)f(x) + Af(y).

Lemma 3.2(1] Let 2 C R" be a convex set, and f:£ - F(R) be a fuzzy mapping.
Then f is a convex fuzzy mapping if and only if its epigraph epif=1{(z, w1z €EQ,ue€
F(R), f(x) < u!l is a convex set in 2 X F(R).
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Definition 3.3 Let closed et U C R", xg € U, mapping f:U— F(R). Ifforany

|z, C U, lim x, = zgand iim f(x,) exists implies }eim F(xy) = f(zq) (or }tim f(x,)
k-0 —= 00 - 00 00

< f(z,y)). Then fis called a lower (or upper) semicontinuous fuzzy mapping at point x,

. If fis both an upper semicontinuous fuzzy mapping and a lower semicontinuous fuzzy

mapping at point x, . Then f is called a continuous fuzzy mapping at point Xg.

Similarly, if f is a continuous fuzzy mapping at arbitrary a point in U. Then fis called
a continuous fuzzy mapping on U.

Theorem 3.1.Let closed set U C R", xg €U, f: U — F(R). Then fis lower semi-
continuous on U iff its epigraph epif is a closed set on U X F(R).

Proof . Necessity. Taking any (x4, s) € epif(k = 1,2,3, ), which satisfies
}ei_{r:o('tk’#k) = (xg, o) - Then we have { z,} C U, {pad T F(R), f(z) < i (R

= 1,2,3,), and lim 74 = zo,lim s = po € F(R).
Due to f is lower semicontinuous. we view that }21_1’.130 f(x,) exists and 11_{130 flx) = f(xo).
In addition, according to the definition of convergence of the sequences of fuzzy numbers
and proposition 2.2, by f(z;) <X g, we get }3_120 flx) < }21_13(1>° (. = po - consequently
Flzo) < pori.e.,(xg, o) € epif . Which means that epif is a closed set.

Sufficiency. Taking any zo € U and |z} C U such that }eﬂ I, = Ig.

Let 115; f(xi) = p. Then we haye (x4, f(z)) € epif .Since epif is a closed set on
U x F(R) , it follows that Ei}}}o(x"’f(x’*)) = (xg, ) € epif.

Hence f(zq) < p = }21_120 F(x) .i.e., fis lower semicontinuous at point xg.

From point z is arbitrary, we obtain that f is lower semicontinuous on U.

Theorem3. 2. Let closed set U & R", xy €U, mapping f : U — F(R) .Then f is lower
semicontinuous on U iff for any 7 € F(R), the level set S,,(f) ={ze Ul f(z)< g}

is a closed set.

Proof. Necessity . According to the proof of theorem 3.1, it follows that f is lower semi- -
continuous at point o € U . Which is equivalent to for-every |z} C U, {4t C F(R)
, such that }eim I, = g, }aim w = pand f(x) < py, (k= 1,2,3, ) implies flzy) <
. Therefore,let n = ¢ = ;. Then we get immediately that S,(f) is a closed set.
Sufficiency. For each zo € U, { x| C U such that iim I, = Xg» }zimf( zp) = Mo -
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clearly, for any 5 > o, where 5, o € F (R) , From the definition of convergence of the
sequences of fuzzy numbers, it shows that x, € S,(f) whenever £ is large enough.
Because S,,(f) is a closed set on U , we have o € S,](f) for all p > p, .
Due to sequence {x;} is arbitrary , it follows that f(zy) < go = }21_13, f(zy).

Consequently , f is lower semicontinuous on U .

Theorem 3.3 Let {2 C R" be a convex nonempty subset. Let f:2—F(R) be a convex
fuzzy mapping. Then ri(epif )= {(x,u) | z € 12, » € F(R), f(x) < ul.

Proof. LetM = [(z,u) |l 2 €1, u € FSR), f(x) < p}. Thenri(epif ) C M
is obvious. We need only prove M C ri(epif )
Let (xg,ug) € M. i.e.,xy € ri2,and f(xy) < po € F(R)
For any (z, ¢) € epif . We have f(z) <
From Lemma 3.1(7]), we know that there exists a Ay > 1 such that y = (1 - 1)z
+ Agzo € 2. Now ,if we can find a A > 1 such that (1 — A)(x, ) + A(zg, o) Eepif
lce,z = (1-A)x+Axg € Q.and f(z) <(1 - A)p + Aug. By lemma 3.1 [7],
we have (xg, ug) €ri(epif ). Then the proof is completed.
Thus, on the one hand ,Let z(t) = (1 - t)y + txy.
then z(t) = (1 - £)(1 - 2g)x + ((1 = t)Ay + t)zy
= (1-¢(2))x + ¢(t)x,.
Where o(t) = (1 - t)Ay + ¢, and 1 < ¢(t) < Ay,.
Let 4, = po — f(xy). Since fis a convex fuzzy mapping, we obtain
f(2(2) ) < (- 1)f(y) + tf(zo) o (1)
On the other hand, z, can be denoted as xy, = (1 - %o)x + :%—y.

It shows that f(x,) << (1 - %)f(:c) + %f(y) By the operation properties of
0 0
fuzzy numbers in proposition 2.1, we can get that
f(y) =1 - 20) f(x) + Agf(zxg) oo (2)
' Combining (1) and (2) , we have f(xz(¢)) <'(1 —e(t)p+ e(t)po — pet + (1

We choose a proper ¢ € (0, 1) such that (f(y) + (g = 1) g — 2x0) < T gt let

A = @(2z). Thend > 1. From the operation properties of fuzzy numbers and proposition
2.1, wehave f({1 - 2A)x + Azg) <<(1 = A + Apg.
That is (1 = A)(z, #) + A(xg, o) € epif. thus, theorem is completed.

Now , we are going to verify an important result of this paper applying to above the-
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orems proved.

Theorem 3.4. Let 2 C R" be a convex nonempty subset . Let f:2—F(R) be a convex

fuzzy mapping . Then f is fuzzy continuous on the relative interior rif2 .

Proof. First. according to theorem 3.1 and theorem 3. 3, we are easy to know that £ is

lower semicontinuous at arbitrary point on rif2.

Second. We need only prove that f is upper semicontinuous on rif2. Thus, for each
2o € rif2. Let o, | CriR(k = 1,2,3, --+) such that li_rgvrk = x¢, and }zl_{r:o fz) =
€ F(R). Now we will verify that ¢ << f(z,). ,

Indeed, otherwise, if f(xy) < . By theorem 3.3, implies (zg, ¢) Eri(epif ).In
the meantime, we have }zi_r.r;(xk, f(x)) = (z¢, ). Whenever £ is large enough, from

the definitions of convergence of the sequences of fuzzy numbers and interval numbers ,
we get (x4, f(z3)) € ri(epif). Consequently, it shows that flz) < f(x). This is
impossible. Hence f is upper semicontinuous at point xo. Which means that f is fuzzy con-
tinuous at point z.

Since xq is arbitrary. f is fuzzy continuous on rif2.
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