Fuzzy Riemann Integrals Based on the Lower Cut Set

Chen Tuyun* Yu Bin# Yuan Xuehai*

* Department of Mathematics, Liaoning Normal University, Dalian 116029, P. R. China # Department of Basement, Dalian Navy Academy, Dalian 116018, P. R. China

ABSTRACT

In this paper, we build two new kind of fuzzy Riemann integrals based on lower cut set; (1) fuzzy Riemann integral of classical function; (2) fuzzy Riemann integral of fuzzy value function based on concave fuzzy numbers.

Keywords, fuzzy sets, lower cut, concave fuzzy number, fuzzy integrals.

1. Preliminary

Let X be a set and $\mathscr{P}(X)$ be power set of X and $\mathscr{P}(X)$ be a set of fuzzy subsets of X over (0,1). For $A \in \mathscr{P}(X)$ and $\lambda \in (0,1)$,

$$A^{\lambda} = \{x \in X \mid A(x) \leq \lambda\} \qquad A^{\lambda} = \{x \in X \mid A(x) < \lambda\}$$

are called as λ —lower cut set and λ —strong lower cut set of fuzzy set A respectively.

Let C be a subset of X, we define \(\lambda \) as a fuzzy subset of X and

$$(\lambda C)(x) = \begin{cases} \lambda, & \text{if } x \in C \\ 1, & \text{if } x \notin C \end{cases}$$

then, we have:

Decomposition theorem (1) $A = \bigcap_{\lambda \in (0,1)} \lambda A^{\lambda}$, i. e., $A(x) = \inf\{\lambda | \lambda \in (0,1), x \in A^{\lambda}\}$; (2) $A = \bigcap_{\lambda \in (0,1)} \lambda A^{\lambda}$, i. e., $A(x) = \inf\{\lambda | \lambda \in (0,1), x \in A^{\lambda}\}$.

Let $H:(0,1) \rightarrow \mathscr{P}(X), \lambda \rightarrow H(\lambda)$ be a mapping satisfying $\lambda < \mu \Rightarrow H(\lambda) \subseteq H(\mu)$. We called H as a order set embedding over X. $\mathscr{U}(X)$ is denoted as a set of all order embedding over X.

In $\mathscr{U}(X)$, we define operations \bigcup , \bigcap , c as following:

$$(\bigcup_{r\in\Gamma}H_r)(\lambda)=\bigcap_{r\in\Gamma}H_r(\lambda)$$

$$(\bigcap_{r \in \Gamma} H_r)(\lambda) = \bigcup_{r \in \Gamma} H_r(\lambda)$$

$$(H^c)(\lambda) = (H(1-\lambda))^c$$

then, we have:

Representation theorem Let $T: \mathscr{U}(X) \to \mathscr{F}(X), H \to T(H) = \bigcap_{\lambda \in \{0,1\}} \lambda H(\lambda), i. e., T(H)$ $(x) = \inf\{\lambda | \lambda \in \{0,1\}, x \in H(\lambda)\}, \text{ then } T \text{ is a homomorphism from } (\mathscr{U}(X), \bigcup, \bigcap, c) \text{ to}$ $(\mathscr{F}(X), \bigcup, \bigcap, c) \text{ and } (1) T(H)^{\frac{1}{2}} \subseteq H(\lambda) \subseteq T(H)^{\lambda}, \forall \lambda \in \{0,1\}, (2)T(H)^{\lambda} = \bigcap_{\alpha \in A} H(\alpha),$ $T(H)^{\frac{1}{2}} = \bigcup_{\alpha \in A} H(\alpha)$

Let f: X→Y be a function, then we have:

Extension principle Let $f_1 \mathscr{F}(X) \to \mathscr{F}(Y) \overset{\wedge}{\mathbb{A}} \to f(\overset{\wedge}{\mathbb{A}}) \overset{\wedge}{\mathbb{A}} \overset{$

2. Fuzzy Riemann integral of classical function

Lemma 2 Let f: X × Y -> Z be a function, we define:

$$f: \mathscr{F}(X) \times \mathscr{F}(Y) \rightarrow \mathscr{F}(Z)$$

$$(\underline{A},\underline{B}) \rightarrow f(\underline{A},\underline{B}) \underline{\Delta} f(\underline{A} \otimes \underline{B})$$

then
$$f(A,B)(Z) = \bigwedge_{\{(x,y)=x\}} (A(x) \vee B(y))$$

Let R be real number field and $f_1R \to R$ be a Riemann integrable function, then $\int_a^b f(x) dx \text{ can be seen as a function:}$

$$I_{\cdot}R \times R \rightarrow R$$

$$(a,b) \rightarrow I(a,b) \triangle \int_a^b f(x) dx$$

By the use of extension principle and lemma 2, we have:

$$I_{:}\mathscr{F}(R)\times\mathscr{F}(R)\to\mathscr{F}(R)$$

$$(\underline{A},\underline{B}) \to I(\underline{A},\underline{B}) \triangleq \int_{\underline{A}}^{\underline{B}} f(x) dx \bigcap_{\lambda \in (0,1)} \lambda \int_{\underline{A}^{\lambda}}^{\underline{B}^{\lambda}} f(x) dx$$

where
$$\int_{A^{\lambda}}^{B^{\lambda}} f(x) dx \triangleq \{z \mid \exists (a,b) \in A^{\lambda} \times B^{\lambda}, z = \int_{a}^{b} f(x) dx \}$$

then we have:

Theorem 1
$$\left(\int_{\underline{A}}^{\underline{B}} f(x) dx\right)(z) = \bigwedge_{\underline{b} f(x) dx = z} \left(\underline{A}(a) \vee \underline{B}(b)\right)$$
 (1)

Definition 1 Formula (I) is called fuzzy Riemann integral of function f over (A,B).

3. Contave fuzzy numbers and fuzzy Riemann integral of contave fuzzy number.

Definition 2 Let $A \in \mathcal{F}(R)$, if for any $\lambda \in (0,1)$, we have,

(1)
$$A^{\lambda} = (a_{-}^{\lambda}, a_{+}^{\lambda})$$
 (where $a_{-}^{\lambda}, a_{+}^{\lambda} \in \mathbb{R}$ and $a_{-}^{\lambda} \leqslant a_{+}^{\lambda}$)

$$(2)A^0 \neq \emptyset$$

then A is called as a contave fuzzy number. R is denoted as a set of all contave fuzzy numbers.

Theorem 2 A be a contave fuzzy number if and only if

$$\tilde{A}(x) = \begin{cases}
0 & x \in (m,n) \neq \emptyset \\
L(x) & x < m \\
R(x) & x > n
\end{cases}$$

where L(x) is a decreasing and left continuous function, $0 \le L(x) \le 1$ and $\lim_{x \to \infty} L(x) = 1$; R(x) is a increasing and right continuous function, $0 \le R(x) \le 1$ and $\lim_{x \to \infty} R(x) = 1$.

We denote A as $A = ((m_A, n_A), L_A, R_A)$

Let $R = \{(a,b) | a,b \in R, a \leq b\}$, then we have,

Theorem 3 Let $H_1(0,1) \to \mathbb{R} \to H(\lambda) = (m^{\lambda}, n^{\lambda}) (\neq \emptyset)$ be a order set embedding over (0,1), then

$$(1) \mathring{A} = \bigcap_{\lambda \in (0,1)} \lambda H(\lambda) \in \mathbb{R}$$

$$(2)A^{\lambda} = \bigcap_{n=1}^{\infty} H(\lambda_n) \qquad (\lambda_n = (1 + \frac{1}{n})\lambda)$$

$$(3) \stackrel{\wedge}{A} = ((m_A, n_A), L_A, R_A)$$

where $m_A = \lim_{n \to \infty} m_{\lambda_n}$, $n_A = \lim_{n \to \infty} n_{\lambda_n}$ $(\lambda_n = 1 - \frac{1}{n})$ $L_A(x) = \bigwedge_{\lambda \in \{0,1\}} \{m_\lambda \le x\}$, $R_A(x) = \bigwedge_{\lambda \in \{0,1\}} \{\lambda \mid n_\lambda \ge x\}$

Theorem 4 Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function, $A_k \in \mathbb{R}$, then $f(A_1, A_2, \dots, A_n)^{\lambda} = f(A_1^{\lambda}, A_2^{\lambda}, \dots, A_n^{\lambda})$

Corollary Let $A, B \in R$, then for any $\lambda \in (0,1)$,

$$(A + B)^{\lambda} = A^{\lambda} \pm B^{\lambda}$$
 $(A \cdot B)^{\lambda} = A^{\lambda} \cdot B^{\lambda}$

$$(A \div B)^{\lambda} = A^{\lambda} \div B^{\lambda}$$
 $(kA)^{\lambda} = kA^{\lambda}$ $(k \in R)$

Definition 3 (1) Function $\tilde{f}_{:}(a,b) \rightarrow \mathbb{R}$ is called as a fuzzy value function over (a,b).

 $(2)f^{\lambda}(x) \triangle (\tilde{f}(x))^{\lambda}$ is called as λ — lower cut function of \tilde{f} .

Definition 4 Let $\tilde{f}_{1}(a,b) \to \mathbb{R}$ be a fuzzy value function and $f^{\lambda}(x) = [f^{\lambda}_{-}(x), f^{\lambda}_{+}(x)]$ is integrable over (a,b) (i. e., $f^{\lambda}_{-}(x), f^{\lambda}_{+}(x)$ is a Riemann integrable function). Integral of \tilde{f} over (a,b) is denoted as

$$\int_{a}^{b} \widetilde{f}(x) dx \triangleq \bigcap_{\lambda \in (0,1)} \lambda \int_{a}^{b} f^{\lambda}(x) dx = \bigcap_{\lambda \in (0,1)} \lambda (\int_{a}^{b} f^{\lambda}(x) dx, \int_{a}^{b} f^{\lambda}(x) dx)$$
Theorem 5 If \widetilde{f} is a Riemann integrable over (a,b) , then $\int_{a}^{b} \widetilde{f}(x) dx \in \mathbb{R}$ and
$$(\int_{a}^{b} \widetilde{f}(x) dx)^{\lambda} = \bigcap_{n=1}^{\infty} \int_{a}^{b} f^{\lambda}(x) dx \quad (\lambda_{n} = (1 + \frac{1}{n})\lambda)$$

Reference

- 1 Chen Tuyun. Lower cut set, decomposition theorem and representation theorem. BUSEFAL, No. 63(1995) 46-48.
- Dubois. D. and Prade. H.. Fuzzy sets and systems. Academic Press, New York, 1980.
- 3 Luo Chengzhong. Introduction to fuzzy sets. Beijing Normal University Press, 1989.