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Abstract: In this paper topology of interval-valued fuzsy sets is defined and some of its properties
are studied. It is shown that the category of topological spaces of interval-valued fussy sets and
continuous functions forms a topological category. '
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0. Introduction

Let D[0,1] be the et of all closed subintervals of the interval [0,1]. The elements of D[O,l] are
generally denoted by capital letters A/\N,..... It is known that Af = [M*, MY], where M* and
M? are respectively the lower and the upper end points; and M = N iff M* = N* and M” = NV.
Further M < N iff M* < N% and MY < NY. The complementary of M is denoted by M* and is
defined by M*=1- M=[1- M”,1- MY]. | -

Let X Be a given nonempty set. Following Zadeh [6], a function A : X — Djfo,1] is called an
interval-valued fussy set (briefly it is written as IVF pet) on X.

Thus for each z € X, A(z) is a closed interval whose lower and upper end points are denoted by
[A(=)]* and [A(z)]” respectively. Clearly every fussy set (briefly denoted by FS) on X is an IVF
set on X. For any interval [a,8 (C [0,1]), the IVF set whose value is the interval [a,b] for all
z € X, is denoted by [a,b]. In particular, if a=b the IVF set [a,5] is denoted by simply &.
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For a partlcular 2o € X aad for & particular interval [u,b] € D[0, 1] with b0, the IVF set which
takes the value [a,b] at z; and 0 elsewhere in X is called an interval-valued fussy point (briefly it
is called IVF point) and is denoted by [a, B, In particular if b=a, then it is also denoted by ay,.

In [2}, C.L.Chang defined topology on fussy sets (he called fussy topology). Later many authors
(wee [4],[5]) have studied with this topology of fuzzy sets.

In this paper we shall define topology of interval-valued fussy sets and study some topological
properties.

In section 1 we give some preliminary results on IVF sets. .

In pection 2 we give the definition of a topology on IVF sets on X, and obtain some basic results.
We define product topology and establish that the class of all topological spaces of IVF sets and
continuous functions forms a topological category. We a.llo define eompu:tnsl and obtain the
Alexander theorem in IVF setting.

In section 3 we define topology on an IVF set and continuous function from an IVF set to an IVF
set. We prove the contimuous image of compact IVF set is compact.

When no confusion is likely to arise we shall use D in place of D[0,1] (doﬁnedeu.rha') Then DX
denotes the set of all IVF sets on X. Thus for M € D, M, is an IVF point on X.

1. Some preliminaries

Let A,B € D*. The equality of two IVF sets is defined by
A=Be [A(z)]" = [B(z))* and [A(@))” = [B(z)]’, ¥ z € X.

Subeet relation is defined by
AC B @ [A@@))* < [B@)I® and [A@))Y < [B(=))°,V z € X.

The complement A° of A is defined by |
[A*(@)])" = 1 - [A@)]” and [A(z)” = 1 - [A(=)}*, Yz € X.

For a family of IVF sets {4;;i € I}, the union G = U; A and the intersection F = () A; are
respectively defined by
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(G = MamA @), [Ge)” = MasAde)", v = € X
0 [P(E)} = Mind A, P = MinfAG, ¥ = € X.
For A€ DX, theset {x ¢ X; A%(z) > 0} is called thompportoan.n& is denoted by A.,.

An IVF point M, ilmdtobolongtonnIVFntA(thi-lllymboﬂmﬂydonotedbyhl € A)if
[A(=)}> > M~ and [A@)]° > MY. It can be sasily shown that A = U{Ad,; M, € A}.

Theorem 1.1. For ail A, B,C, A, B; € DX jbllm’nya hold:
- ())0cAci,

(%) AUB = BUA ; ANB = BNA,

(%) A BUC) = (AUB)UC; An(BnC') (AnB)nC'
(%) A, BC AUB; ANB C A,B,

v) ANQU B) = U(ANB:),

(v AN B;) = (AU By),

(vii) (0) = 1; (T)* =3,

(i) (A°Y = A,

(i) (Us A)*= [\ AS,

(3 (% A)*= Uy Af.

Remark 1.3. Inotdlmryfuwmﬁng.gt‘u-ypoiml’.éa\;UAziﬂ'P.éa\;orP.é&orboth.'
But this is not true in IVF setting. This is shown by the following example:

Example 1.3. Let X = {z;,2,}, .
A =L A4 =0, Thea the IVF point My (= (4, Jln) & 41U4; but M,, # Ay snd Mo, § Ay

Definition 1.4 Let f: X—vao..fnm:ﬁon.Lot»\eDx Then the image of A written as f())
is defined by

FO@)E = {S"P,-:(-){b\(z)l‘}. :,ft l{"‘(u) is not empty
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NG = {5'4’;-!(-){[)‘(3)]"} if f~'(y) is not empty

otherwise

Let u € D¥. Then the inverse of u written as f~1(u) is defined by

[ W)@)° = W(F(=)))° and [f(u)(@)° = [s(F(=)", ¥z € X.

Theorern 1.5. Let f : X = Y be a function. Then

() 1YB)=[UB), VY Be DY,

(%) [f(A)F C f(4°), ¥ Ae D*,

(%) By C By= {YB) C f-(B.), where By, B, € D",

(%) A;C A, = f(A1) C f(A,), where Ay, A, € DX,

(v f(YB)cCB,YBeD,

() AcCf(f(A)),V Ae D%,

(vii) Let f be a function from X toY andg be a function fromY to 3. Iﬁm(gaf)“((}) =
IYg™(C)), ¥ C € D*, where gof is the composition of g and f,

(vis) [ (Usea Br) = Usen - 1(B,), B, € D",

() Y Nia Bi) =Mica f(B:), B; € D".

3. Topology of interval-valued fuzzy sets
In this section we shall first give the definition of topﬁlog of interval- valued fussy sets.

Definition 2.1. Atopologica.lspweofiVFntsisapdr(X r) where X is a nonempty set and
7 is a family of IVF sets on X n.tilfymgthefollowmgthmmoms'

(Vider

(2) A\ Ber=» ANBer,

BAericA=UaAier

7 is called a topology of IVF sets on X. EverymemberofrilcilledIVFopcn. B € DX is mid

to be dosed in (X,7) iff B° € . As in ordinary topologies the indiscrete topology of IVF sets
conteins only 1 and 0, while the discrete topology of IVF sets contains all IVF sets. These two
topologies are respectively denoted by 7° and 1. A topology n is mid to be weaker (or coarser)
than a topology m if 7 C 7. In that case 7 is said 1o be stronger (or finer) than 7.

o b e el



Do
<

Theorem 2.2. Let {7;: i € I} de a family of topologies of IVF sets on X. Then (x{n : IGI}
15 also a topology of IVF sets on X.

Theorem 2.3. Let {n :i € I} be a famsily of topologies of IVF sets on X. Then {r,:i € I}
fomaawmpletelattwemﬂzrupectwsetsmlmmnlaaonofwbc]zr'ubhemallat
element and T is the largest element.

Theorem 2.4. Let (X,7) de a topoloywalapwc of IVF sets and let T denotc the collection
of all IVF closed sets. Then

7)0ieT,

() R, /,eT= F;UFzGT

(I)ReTicA =, R

Definition 2.8. Let (X, ) be a topological space of IVF sets. A suboollection B of r is said to
be a base for rifmrymemberofrcu.nbeo:pre-odua._unionofm_emberaof&

an!tlon 2.8. Let (X, 7) be a topological space of IVF sets. A subcollection S of ~ is said to
be a subbase for r if the family of all finite intersections of members of S forms a base for 7.

Theorem 2.7. Let B be a family of IVF sets on X such that 0,1 € B. If for any By, B, € B
and for any M, € B1(\B, there esists w € B suck that M, € w C B1NBs, then B is a base
Jor some topology of I'VF sets on X.

Remark 2.8. The converse ofthea.bmtheoremwhomnot true. This is shown by the
following example:

Example 2.9. Let X be a nonempty set. ’
Let 7 = {0,1, 41, 42, By, By, A1U A, A1) Ay, By U By}, where A; = [LT], 4, = [0,]], AiUA; =
[4..]o Ai1NA; =0, %] B = [4.5 By [z.%]. BxUBz=[z. 8, BiNB, = [4.4] = A1UA;. Then7
is a topology of IVF sets on X. Let B= {0,1, A;, A;, By, B, A;[) A;}. Clearly B is & base for the
topology 7. For the IVF point [, §]. in X, [, 3], € B/ B, but there exists no member w of B
such that [, %], € w C BiNB,.



21

Definition 3.10. An IVF set B in a topological space of IVF sets (X, 7) is said to be a neighbour
hood (in short nbd) of an IVF point A, iff there exists an IVF open set O such that Af, € O C B.

Theorem 2.11. /n a topological space of IVF sets (X,1) an IVF set A€ riﬂ’z’tt’s a ndd of
each of sts TVF pownts.

Definition 2.12. Let 0 < a < b and (a,b) # (0,0). A pair of numbers (5,7) with the proper‘.y
() 6> 0,7>0,

(ii)§=0ifa=0,

(i) 0< a -8 < b -7, is called an admissible pair.

Theorem 2.13. Zet (X,7) de a topological space of ITVF sets. ibraxcfzIVFpth,, let
N(M,) denotes the collection of all nbds of M,. Then

(N1)1e N(M,),Y M, and Aec N(M,)= M, € A,

(N2) A,B € N(M,)= ANB ¢ N(M,),

(N3) AC B and A€ N(M,)= B e N(M,),

(N4) A € N(la - 5,5~ 1)), for all admissible 5,7 = A € N(a,b.),

(N5) A€ N(M), B € N(P)» AUB € N(MUP), «

(N6) Ae N(M,)= 3 8 € N(M,) such MatSch:AA and Se N(P.), VP ES.

Theorem 2.14. Let X be a nonempty set. Let for each IVF point M, there exists a nonemply
collection N(M,) of TVF sets on X satisfying (N1) - (N86). '
Letr={Ae D*; Ae N(F), ¥V P, € A).

Then r i8 a topology of IVF sets on X suckh that N(M,) iz the family of all nbds of M, in
(X, 7).

Definition 2.15. Let A be an IVF pet in a.topol«;gicn.l space of IVF sets (X,7). Then an IVF
point M, is said to be an interior point of A iff A ix a nbd of M,. |
The union of all interior points of A is called the interior of A and is denoted by intA.

Theorem 2.18. Let A be an IVF set in a topological space of IVF sets (X,r). Then intA is
open and s the largest IVF open set contasned in A. An IVF set A is open iff A=intA
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Definition 2.17. Let A be an IVF set in a topological space of IVF sets (X, 7). Define closure of
A by N{B € DX; B is closed and A C B} and denote it by clA.

Theorem 2.18.

(5) clp=4,

(8] X=X,

(%) A cCclA, VA e DX,

(i) CclA is a closed set,

(v) A is closed ff A= clA,
() c{AUB)=clA| ciB,
(vii) clfciA)= ciA.

Theorem 2.19. For any A € DX, clA = [int(A%)]".

Definition 2.20. A function f : (X, 73) — (¥, ) is said to be contimous if f~I(u) € 1, V u € .
Ef:(X,n)—=(Y,»)andg: (Y,AQ) — (Z,.n) are continuous then gof is also continuous because
of (gof)™(C) = f~'g™H(C)), VC e m. |

Theorem 3.21. Jf(X,n) and (Y, ) de two topological spaces of IVF sets and f de a function
from X toY, then the following statements are equivalent:

(a) the function f is continuous,

(3) the inverse of every IVF closed set is closed, »

(c) for each IVF point M, in X the inverse of every nbd of {(M,) under f is a nbd of M,,
(d) for each TVF point M, in X and each nbdV of {(M,), there is a nbd W of M, such that
w)cv,

re) f(clA) CcXf(A)).

Theorem 2.23. Let S be a family of IVF sets of X such that®,1 € S. Then S is a subbase
Jor the topology T, whose members are of the form Uiea(Mies, Sip) where A s an arditrary
indezx set and for eachi € A, J; $5 @ finste index set, S;, €S fori € A and k€ J;.

Definition 2.23. Let {f; : X — (¥;,7)}ica be a family of functions where X is & nonempty set
and {(Y;, 73)}ica is a family of topological spaces of IVF sets. Then the topology 7 generated from
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the subbase S = {£;"}(0); O € n,i € A} is called the topology of IVF sets (or initial topology of
IVF sets on X) induced by the family of functions {f;}:ca from the family of topological spaces of
IVF sets {(Y;, 1) }iea- ’

Theoremn 2.24. The instial topology of IVF sets on X induced by the /wﬁx’ly {fi: X >
(Y, n)kiea i the coarsest topology of IVF sets on X with respect to which each f; : (X,7) -
(Y:,n) is continuous, i € A. ~

Definition 3.35. Let {{X;, 73)}ies be a family of topological spaces of IVF sets. Then the initial
topology of IVF sets on X (= ILeaX:) generated by the family {p: : X — (X, %)}iea is called the -
product topology on X. |
(here p; : X — X; is the projection mapping, i € A.)
This topology may be denoted by H;can.

Remark 3.26. Clearly, by definition of the product topology of IVF sets 7 on the product space
X(= IocaX,), the projection mappings P, : (X, 7) = (X4, 7.) are continuous.
However, the projection mappings are not necessarily open. This isshown by the following exampie:

Example 2.27. Let X; = {z,1} = Xz and 1 = {Ox,,1x,,A}, 7 = {Ox, 1x,,}, Where,

A(xi) = 0.4, A(x2) = 0.6; ps(z1) = 0.8, u(z,) = 03. Let ~ = {Oxexxar 13 x0s U1, 2, 01 N, w1 U g},

where, u; = pr'(A),us = ;" (). | |

Then T is the product topology on X; x Xz and p2(w) ¢ m, p1(ue) ¢ ni. Thus the projection
mappings p; and p2 are not open.

Theorem 2.28. Let {(X. Ta)laca de a famsly of topological spaces of IVF sets and T be
the product topology on X(= NecaXa). Let (Y,7') de a topological space of IVF sets and
f:Y = X de a mapping. Then f:(Y,7) — (X,7) is continuous {ff psof : (Y,7') — (Xa Ta)
is continuous, ¥ a € A. |

Remark 2.29. From theorem 2.28, it thus follows that the class of all topological spaces of IVF
sets and continuous function forms a topological category.

Definition 2.30. Let (X, 7) be a topological space of IVF sets. Then r is said to be Lowen-type
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if every constant IVF set on X belongs to 7.

Theorem 2.31. Let {(Xa,7a)}aea e a family of Lowen-type topologscal spaces of]VF&eb
and X = MoeaXa, T = MacaTa. Then the projection mappings ps : (X,7) — (XasTa)y *x €D

are open mappings.

Definition 2.332. A family C of TVF sets is mid to be a cover of X if Iy C Usectw. It is called an
open cover of X Iff C is a cover of X and each member of C is an IVF open set. A subcover of C is
a subfamily of C which is also a cover. |

Definition 2.33. A topological space of IVF sets (X, 7) is said to be compact iff each o;}en cover
of X has a finite subcover.

‘We shall now establish the Alexander theorem on compectness in IVF petting.

Theorem 2.34. /'S is a subbase for a topology of IVF sets on X suchthatewiycowraf
X by members of S haaaﬁm'téauh»wr, then X is compact.

Theorem 2.35. Zet {(X:, )} be a finite collection of IVF spaces, X = I, X, r=DLm.
Then (X, T) i8 compact. .

However, the above theorem is not true when the mumber of spaces is infinite. This can be shown
by the following example: ' '

Example 2.98. Let X; =[0,1], i € N(N =1,2,3,.....), 7 = {§,1, A}, where X(z)=Fy,V=ze
[0,1]. Then (X;,n) are compact spaces of fussy sets. '

Let, X = I, X, 7 = O2;n. Then, VR (N)(=) = vE(An(a) = V2gz =1, Yz € X.
So, {pr1(X)}; is an open covering of X; but {p;'(\)}i2; has no finite subcovering, since for
& =(},4,....) € X and for finite subset J of N, ViesPi 1(A)(€) < 1. Hence (X, 7) is not compact.

3. Topology on an interval-valued fussy set

In [1], M.K.Chakraborty and T.MGAhnnﬂhh gave the definition of a topology (they called it
fussy topology) on a fuzay set. In this section we give the definition of a topology on an interval-
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valued fussy set.

Let X.debitwomnomplyailpml. Let A€ DX,B € DY, A C A,u C B. The supports of
A and B are denoted by A, and B, respectively.
With these notations we now give the following definition:

D‘nltion 8.1. Let f: A, — B, be a mapping. If Bf(z) > A(z), Vz € A;,then wemy fisa

mapping from A to B. We also denote it by f: A — B. For f: A — B and for A C A, we define -
f(A) by

[f()\)(ﬂ))‘ = {X’!C')-![‘\(’)]Ll if f~ l(y) is not mw

if f~Y(y) is empty
‘ y € B;.
= oA, I f1y)
v z not empty .
P = {3 I8 o e
y € B,.

For u C B, we define f~'(u) by

[ G)@F = A AN, z€ A
and |

[ 1)@ = [AE]E A u(f@))Y, = € As.
With the sbove notations following holds:

Theerem 3.3. (i/ f(\) C B,f~'(u) C A,
(%) f(ViN) = Vif(N), N C A€ A,

() Ay C Ay = f(O1) C f(ha)s Ay 22 C A,
() [~ (Vau) = Vi (), 4 € By € 4,
(v) (§~*(w)) C pu C B,

(%) A C f1f(0), A C A.

Dedinition 3.3. IntX(#cﬁ) be a crisp set and A € DX. A subwet T of DX is smid to be a topology
on A if

(AAeT = \CA,
(2)0,A€eT,



26

B AuMeT= AN eT,
WDMeTie A= UeaMeT.

If  is a topology of IVF sets on X and ifAer, then, 7, = {ANu; u € 7} is a topology on A.

Let X and Y'betwononemptyctispsetsand $:X —Y bea mapping, A € DX and B = ¢(A).
Let ¢, denote the restriction of ¢ on A;. Then ¢, is a function from A to B, since B 4(z) >
A(z),¥Y z € A;.

Theorem 3.4, Let (X, 7) and (Y, 7) be two IVF topologscal spaces and ¢ : (X,) — (Y, 7) be
continuous. Let A € D* and B = §(A). Then ¢, : (A,7,) — (B, 7}) is continuous.

Definition 3.5. Let X and Y be two crisp sets, A € DX, B € DY. Let 7 and 7 be topologies
onAmdBmpoctiwlyandf:A—vaea.mpping, Then f is said to be continuous iff
fYwen Vuer. '

Definition 3.6. Let A be an IVF set on X. Thenahmilont‘IVFmonXisuidtobea
cover of A if A C Upesw-

Definition 3.7. LetX(;E:ﬁ)bescrfspm. Let A € D* and T be a topology on A. Let u C A.
Thonuil-idtobeeompwtit'MryopenwmofubymembenofThua.ﬁnitembcover.

Theorem 3.8. Let A € D*,B € DY, where X and Y are nonempty sets, Let and v be
topologies on A and B respectively and f be a continuous mapping from (A 1) to (B,7).
Let A (C A) de compact. Then f()) is compact.
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