ON HAUSDORFF FRAME-FUZZY TOPOLOGICAL SPACES

Liu Yong (Department of Basic Course, Dalian Railway Institute, Dalian 116028, P.R.China)

Xie Lin (Department of Mathematics, Liaoning Normal University, Dalian 116029, P. R. China)

ABSTRACT

In the paper, a valid definition of pointless T_2 in Frame-fuzzy topological space is introduced, and the relationship between several kinds of Frame-fuzzy topological space T_2 separation axioms and the conditions of their application are discussed.

Keywords: Prime, Hausdorff, Spatial frame, Frame-fuzzy topological space

Throughout this paper L is a frame . We will denote by pr(L) the set of primes of L, by (L^x,δ) the Frame-fuzzy topological space . $\forall \, x \in X, \lambda \in pr(L)$, $A^x_\lambda \colon X \to L$ is the L-fuzzy set defined by $A^x_\lambda (x) = \lambda$ and $A^x_\lambda (y) = 1$ if $y \neq x$. $\neg x = \lor \{b \in L: b \land x = 0\}$. We say a < b if there exists $c \in L$ with $c \land a = 0$ and $c \lor b = 1$; L is spatial iff for all $a, b \in L$, $a \not\leq b$, there exists $\lambda \in pr(L)$ with $a \not\leq \lambda$ and $b \leq \lambda$. [1]

1. Pointless Hausdorffness in Frame-fuzzy topological space

Definition 1.1 (L^x, δ) is T_2^* iff $A_{\lambda}^x = \sqrt{\{B \in \delta : B \leqslant A_{\lambda}^x\}}$ for each $x \in X$ and $\lambda \in pr(L)$. [2]

By this definition , however , all fuzzy topological spaces (i.e. L=I) aren't T_2^* . In fact ,if (L^X,δ) is T_2^* , then L must satisfy some separation axioms .

Definition 1.2 (1) L is T_2^* iff $\lambda = \sqrt{p \in L: p \leq \lambda}$ for each $\lambda \in pr(L)$.

- (2) L is T_2^{**} iff for every $r_1,r_2\in pr(L)$ with $r_1\neq r_2$, there exist a, $b\in L$ such that $a\not\leq r_1$, $b\not\leq r_2$ and $a\wedge b=0$. [3]
- **Theorem 1.3** For any non-empty set X, if $pr(L) \neq \emptyset$, then the

following conditions are equivalent:

- (1) There exists $\delta \subseteq L^X$ such that (L^X, δ) is T_2^* ;
- (2) L is T_2^* ;

Morever, if L is spatial, then (1) and (2) are equivalent to the following condition:

(3) L is T_2^{**} .

Proof: $(1) \Leftrightarrow (2)$: obviously.

 $(2) \Rightarrow (3) : \text{Assume that } L \text{ isn't } T_2^{\bullet\bullet}. \text{ Then there exist } \eta \text{ , } \lambda \in pr(L) \text{ with } \eta \neq \lambda \text{ (without loss of generality , let } \eta \not\leq \lambda \text{) , for any } a,b \in L, a \not\leq \eta \text{ and } b \not\leq \lambda \text{ imply } a \land b \neq 0 \text{ . If there exists } p \in L \text{ with } p \lessdot \eta \text{ and } p \not\leq \lambda \text{ , then for each } q \in L \text{ with } q \land p = 0 \text{ , we have } q \leq \eta \text{ . So } \neg p \lor \eta \leq \eta \neq 1 \text{ . This contradicts with } p \lessdot \eta \text{ . Thus } p \lessdot \eta \text{ implies } p \leq \lambda \text{ . Hence } \vee \{p \in L : p \lessdot \eta\} \leq \lambda \text{ and } \vee \{p \in L : p \lessdot \eta\} \neq \eta \text{ . This is a contradiction . }$

 $(3) \Rightarrow (2) : \text{Let } \lambda' = \bigvee \{ p \in L : p \lessdot \lambda \}. \text{ Assume } \lambda' \neq \lambda \text{ .Then there exists} \\ \eta \in pr(L) \text{ such that } \lambda \not \leq \eta \text{ , } \lambda' \leq \eta \text{ .By } \mathsf{T_2}^{\bullet\bullet}, \text{ there exist } a,b \in L \text{ such that} \\ a \not \leq \lambda, \ b \not \leq \eta \text{ and } a \land b = 0 \text{ . Thus } b \not \leq \lambda' \text{ . On the other hand, if } a \lor \lambda = \lambda'' \neq 1 \text{ ,} \\ \text{then there exists } \lambda''' \in pr(L) \text{ such that } 1 \not \leq \lambda''' \text{ , } \lambda'' \leq \lambda''' \text{ . This implies} \\ \lambda \leq \lambda''', \text{ a contradiction . Hence } b \not < \lambda \text{ and } b \leq \lambda' \text{ . This contradicts with} \\ b \not \leq \lambda'' \text{ .}$

We have known that there exists a T_2^* topology on X iff L is T_2^* . However, when L is a pointless frame, even if δ is the trival topology on X, (L^X, δ) is T_2^* . Therefore the definition of T_2^* isn't satisfactory sometimes. We give the following definitions.

Definition 1.4 Let $a, b \in L$, $a \ne 1$. We say $b \stackrel{\sim}{\sim} a$ iff $b \le a$ and $\neg b \not \le a$. **Definition 1.5** (L^x, δ) is a T_2^0 space if $A = \bigvee \{B \in \delta : B \stackrel{\sim}{\sim} A \}$ for every $A \in \delta$.

Theorem 1.6 If L is spatial, and $A_{\lambda}^{x} \in \delta$ for each $\lambda \in pr(L)$ and $x \in X$ (i.e. (L^{X}, δ) is a T_{1} space [4], then the following conditions are equivalent:

- (1) (L^X, δ) is a T_2^* space;
- (2) (L^X, δ) is a T_2^0 space.

Proof: (1) \Rightarrow (2) Assume that (L^x, δ) is T_2^* , then $A_\lambda^* = \bigvee \{B \in \delta : B \leqslant A_\lambda^x\}$. Let $B \leqslant A_\lambda^x$, then there exists $C \in \delta$ such that $C \land B = 0$, $C \lor A_\lambda^x = 1$. Hence $\neg_\delta B \nleq A_\lambda^x$. Thus $B \approx A_\lambda^x$. If $A \neq 1_X$ for each $A \in \delta$, then there exists $x \in X$ such that $A(x) \neq 1$. Therefore there exists $\lambda \in pr(L)$ such that $A(x) \leq \lambda \leq 1$. Thus $A \leq A_{\lambda}^{x}$. Since $B \approx A_{\lambda}^{x}$, $A \wedge B \approx A$. Hence $A = \vee \{A \wedge B \in \mathcal{S} : A \wedge B \approx A\}$. So (L^{x}, \mathcal{S}) is T_{2}^{0} .

 $(2) \Rightarrow (1) \quad \text{For each } B \in \mathcal{S} \text{ with } B \overset{\sim}{\sim} A^x_{\lambda} \text{ , let } B(x) = a \in L \text{ and denote } \\ \neg_{\mathcal{S}} B(x) = \neg a. \quad \text{If } \lambda \vee \neg a = b \neq 1 \text{ , then } A^x_b = A^x_{\lambda} \vee B. \text{ Thus } A^x_b \in \mathcal{S} \text{ and } \\ A^x_b = \vee \{D \in \mathcal{S}: D \overset{\sim}{\sim} A^x_b \} \text{ . On the other hand , if } D(x) \not\leq \lambda \text{ for each } D \in \mathcal{S} \text{ with } D \overset{\sim}{\sim} A^x_b \text{ , then by } D(x) \wedge \neg_{\mathcal{S}} D(x) = 0 < \lambda \text{ and } \lambda \in pr(L) \text{ , we have } \\ \neg_{\mathcal{S}} D(x) \leq \lambda \text{ . Thus } \neg_{\mathcal{S}} D \leq A^x_{\lambda} \leq A^x_b \text{ . This contradicts with } D \overset{\sim}{\sim} A^x_b \text{ . Hence } \\ D \overset{\sim}{\sim} A^x_b \text{ implies } D(x) \leq \lambda \text{ . So } \vee \{D \in \mathcal{S}: D \overset{\sim}{\sim} A^x_b \} \leq A^x_{\lambda} \neq A^x_b \text{ , a contradiction . } \\ \text{Hence } \lambda \vee \neg a = 1 \text{ . Furthermore , take } C \in L^x \text{ satisfying } C(x) = \neg a \text{ and } \\ C(y) = 0 \text{ for each } y(\neq x) \text{ , then } C \leq \neg_{\mathcal{S}} B \text{ . From } (A^x_{\lambda} \vee C)(x) = \lambda \vee \neg a = 1, \\ \text{it follows } B \overset{\sim}{\sim} A^x_{\lambda} \text{ . Hence } (L^x, \mathcal{S}) \text{ is a } T^*_a \text{ space .} \\ \end{cases}$

2 Hausdorffness in L-fuzzy topological space and Frame-fuzzy topological space

In usual documents ([5]), (L^x, δ) is a T_2 space if for any pair of distinct L-fuzzy points x_t and y_r $(x \neq y)$, there exist $U, V \in \delta$ such that $x_t \in U, y_r \in V$ and $U \cap V = 0$.

Theorem 2.1 If $A_0^x = \bigvee \{B \in \mathcal{S} : B < A_\lambda^x, B(x) = 0\}$ for each $x \in X$ and $\lambda \in pr(L)$ ———(*), then (L^X, \mathcal{S}) is a T_2 space.

The proof is directed.

It is easy to see that the condition (*) of Theorem 2.1 is strictly weaker than T_2^{\star} separation axiom .

Example 2.2 Let $X = \{a, b\} \cup N \times N$, where $a, b \notin N \times N$. Denote $L_i = N \times \{i\}$. Define O_i (i = 1,2,3) as follows:

$$O_1 = \{A \in L^X : A(a) = A(b) = 0\}$$
;

$$O_2 = \{A \in L^X : (A(a) \neq 0) \land (\exists k \in N, \forall i \geq k, \big| \{x \in L_i : A(x) = 0\} \big| < \aleph_0 \}\}$$

$$O_3 = \{A \in L^X : (\exists n, A(b) \ge 1 - \frac{1}{n}) \land (\forall i \le n, |\{x \in L_i : A(x) = 0\}| < \aleph_0)\}.$$

Let τ be the topology generated by $O_1 \cup O_2 \cup O_3$. Then (I^X, τ) forms a fuzzy space. It is obvious that (I^X, τ) is a T_2 space. But for each $\lambda \in pr(L)$ and $\lambda > 0$, we have $A_0^b \neq \bigvee \{A \in \tau : A \leq A_\lambda^b\}$. In fact, if $A(a) \neq 0$, then there exists $i \in N$ with $i = \land \{j \in N : A(x) \neq 0, x \in B \subset L_j, |B| \ge \aleph_0 \}$. If $B \land A = 0$

for every $B \in \tau$, then $B(b) < 1 - \frac{1}{i}$. Since $A_{\lambda}^{b}(b) \neq 1$, $(A_{\lambda}^{b} \vee B)(b) \neq 1$. Hence $A < A_{\lambda}^{b}$ doesn't hold. This implies that if $A < A_{\lambda}^{b}$, then A(a) = 0. Thus $\vee \{A \in \tau : A < A_{\lambda}^{b}\}(a) = 0$. But $A_{\lambda}^{b}(a) = 1$, a contradiction.

By making use of the relation " $\tilde{<}$ " introduced in the paper ,a characterization of T₂ separation in (L^x,δ) is given . It also shows clearly the differences between T₂* and T₂ in (L^x,δ) .

Theorem 2.3 (L^x, δ) is T_2 iff $A_0^x = \bigvee \{B \in \delta : B \leq A_\lambda^x, B(x) = 0\}$ for each $x \in X$ and $\lambda \in pr(L)$.

Proof: "←" It follows from Theorem 2.1.

"⇒" Obviously $A_0^x(x) = 0$. It is sufficient to verify $A_0^x(y) = 1$ for every $y(\neq x)$. Assume that $A_0^x(y) = a \neq 1$, then there exists $\eta \in pr(L)$ such that $1 \not \leq \eta$, $a \leq \eta$. Take $A_\eta^y \in \delta$. By T_2 , there exist B_1 , $B_2 \in \delta$ such that $B_1 \not \leq A_\eta^y$, $B_2 \not \leq A_\lambda^x$ and $B_1 \wedge B_2 = 0$, thus $B_1 \stackrel{<}{\sim} A_\lambda^x$. Since $B_1 \not \leq A_\eta^y$, $A_0^x(y) \not \leq \eta$. Therefore $A_0^x(y) \neq a$, a contradiction.

References

- [1] P. T. Johnstone. Stone Space (Cambridge University Press. 1982).
- [2] M. W. Warner. Frame-fuzzy points and membership. Fuzzy Sets and Systems 42(1991)335-344.
- [3] J. H. Liang. Convergence and Cauchy Structures on Locales. ACTA MATHEMATICA SINICA. 38 (1995) 294-300.
- [4] P. M. Pu and Y. M. Liu . Fuzzy topology I , Neighbourhood Structure of a point and Moore-Smith Convergence , J. Math. Anal. Appl. 76 (1980) 571-599.
- [5] M. W. Warner, R. G. Mclean. On compact Hausdorff L-fuzzy Spaces. Fuzzy Sets and Systems 56 (1993) 103-110.