The Weak-autocontinuity of Set Function and Its Applications

Li Xiaoqi

Department of Basic Sciences, Hebei Institute of Architectural Engineering, Zhangjiakou, Hebei, China

Abstract: In this paper, The concept of weak-autocontinuity of set function is introduced. Relations between this concept and the concepts of autocontinuity and null-additivity and λ -subadditivity are given. We also obtain the conditions for Egoroff's Theorem and Riesz's Theorem. They are weaker than conditions given in [2,3] and one of them is the necessary condition for Riesz's Theorem.

Keywords: Autocontinuity, Set function; Weak-autocontinuity.

1. Introduction

Throughout this paper, let X be a classical nonempty set, F be a σ -algebra, $\{f_n\}$ and f be measurable functions. All concepts and signs not defined in this paper may be found in [1,2,3,4].

In [2] the following concept is given:

Definition 1.1 A set function μ is called autocontinuous from above (resp. from below) if we have

$$\mu (A \cup B_n) \rightarrow \mu (A) (resp. \ \mu (A - B_n) \rightarrow \mu (A))$$

whenever $A \in F$, $B_n \in F$, $A \cap B_n = \Phi$ (resp. $B_n \subseteq A$), $n=1,2,3,..., \mu(B_n) \to 0$.

 μ is called autocontinuous if it is both autocontinuous from above and autocontinuous from below. In [4], Zhao gives

Definition 1.2 A fuzzy measure μ in a fuzzy measure space is called λ -subadditive if whenever $A,B \in F$, we have

$$\mu$$
 (A \cup B) $\leq \lambda \mu$ (A)+ $\lambda \mu$ (B), $\lambda \geq 1$.

In [2,3,4], Wang and Zhao give their own asymptotic structural characteristics respectively, and give the following results.

Theorem 1.3 (Egoroff's Theorem) If μ is autocontinuous from above(resp. λ -subadditive) and $A \in F$, then

$$f_n \xrightarrow{a.e.} f$$
 is equivalent with $f_n \xrightarrow{a.u.} f$ on A.

Theorem 1.4 (Riesz's Theorem) Suppose μ is autocontinuous from above(resp. λ -subadditive) and $A \in \mathbb{F}$, If $f_n \xrightarrow{\mu} f$ on A, then there exists a subsequence $\{f_{n_k}\}$ of $\{f_n\}$, such that $f_{n_k} \xrightarrow{a.e.} f$.

Conclusions under the condition of autocontinuous from below can be found from [2]. Concepts of $\{f_n\}$ converges to f " almost everywhere "(a.e.) and " pseudo-almost everywhere "(p.a.e.)," almost uniform "(a.u.) on A come from [1,2,3] wholely.

2. Concept of Weak-autocontinuity

Definition 2.1 Let μ be a set function, if for any E n, $A \in F$, n=1,2,..., and μ (E n) $\rightarrow 0$, there exists a

subsequence { E_{n_k} } of {E $_n$ } , such that

$$\mu (A \cup (\cup E_{n_k})) \rightarrow \mu (A) \text{ (resp. } \mu (A - (\cup E_{n_k})) \rightarrow \mu (A)),$$

$$k=m \qquad \qquad k=m$$

then μ is called weak-autocontinuous from above (resp. weak-autocontinuous from below).

 μ is called weak-autocontinuous if it is both weak-autocontinuous from above and weak-autocontinuous from below.

Theorem 2.2 For any E $_n \in F$, n=1,2,3,..., μ (E $_n$) \rightarrow 0, if there exists { ϵ $_k$ }, where { ϵ $_k$ } is a sequence of subsequences of {E $_n$ }: ϵ $_k$ ={ $E_{n_i}^{(k)}$ }, k=1,2,3,...,

such that $\lim_{n \to \infty} \mu(A \cup (\cup E_{n_i}^{(k)})) = \mu(A)$, then μ is weak autocontinuous from above $k \to \infty$ i=1

(resp. lim μ (A- \cup $E_{n_i}^{(k)}$)= μ (A), then μ is weak-autocontinuous from below). $k\to\infty$ i=1

Proof. From the condition of the theorem, we know for $E_n \in \mathbf{F}$, n=1,2,3,..., $\mu(E_n) \to 0$, there exists $\{\epsilon_k\}$, where $\epsilon_k = \{E_{n_i}^{(k)}\}$, such that

$$\lim_{k\to\infty} \mu(A \cup (\cup E_{n_i}^{(k)})) = \mu(A).$$

So first, we can obtain $\epsilon_1 = \{E_{n_i}^{(1)}\}$, such that $\mu(A \cup (\cup E_{n_i}^{(1)})) < \mu(A) + 1$.

For this ϵ_1 , because $\lim \mu(E_{n_i}^{(1)})=0$ is true, so furthermore there exists a $i \to \infty$

subsequence $\epsilon_2 = \{E_{n_i}^{(2)}\}$ of ϵ_1 , such that $\mu(A \cup (\bigcup E_{n_i}^{(2)})) < \mu(A) + \frac{1}{2}$. In general,

there exists a subsequence $\epsilon_k = \{E_{n_i}^{(k)}\}$ of $\{E_{n_i}^{(k-1)}\}$, such that

$$\mu (A \cup (\cup E_{n_{\downarrow}}^{(k)})) < \mu (A) + \frac{1}{k}, k=2,3,....$$

$$i=1$$

If we take
$$n_i = n_i^{(i)}$$
, then $\{E_{n_i}\}$ is a subsequence of $\{E_n\}$ and $\bigcup E_{n_i} \subset \bigcup E_{n_i}^{(k)}$, $k=1,2,...$,

Consequently,

for all k=1,2,3,..., and therefore lim μ (A \cup (\cup E $_{n_i}$))= μ (A). $k \rightarrow \infty$ i=k

The proof for the situation of weak-autocontinuous from below is similar.

The following proposition gives the relations between weak-autocontinuity from above with other concepts.

Proposition 2.3

- 1). If μ is a possibility measure, then μ is weak-autocontinuous from above;
- 2). If μ is autocontinuous from above, then μ is weak-autocontinuous from above;
- 3). If μ is a quasi-measure, then μ is weak-autocontinuous from above;
- 4). If μ is a λ -fuzzy measure, then μ is weak-autocontinuous from above;
- 5). If a fuzzy measure μ is λ -subadditive, then μ is weak-autocontinuous from above at 0. Proof.
- 1). Suppose μ is a possibility measure, then $\mu (\bigcup A_i) = \sup \mu (A_i)$. $i \in I$

So if $E_n \in F$, $\mu(E_n) \to 0$, n=1,2,3,..., then for any $\epsilon > 0$, there exists a natural number N such that $\mu(E_N) < \epsilon$, (n > N). Now we take $E_{n_1} = E_N$, $E_{n_2} = E_{N+1}$,...,

then μ (A \cup (\cup E $_{n_k}$)) < μ (A)+ ϵ . From Theorem 2.2 we know μ is weak-autocontinuous from above.

2). If μ is autocontinuous from above, then μ ($A \cup E_n$) $\rightarrow \mu$ (A) for any $\{E_n\}$ such that μ (E_n) $\rightarrow 0$. So for any $\epsilon > 0$, there exists E_{n_1} such that

$$\mu \text{ (A} \cup E_{n_1} \text{)} < \mu \text{ (A)} + \frac{\varepsilon}{2} \text{, furthermore, from } \mu \text{ (A} \cup E_{n_1} \cup E_n) \rightarrow \mu \text{ (A} \cup E_{n_1} \text{) we}$$
 know there exists $n_2 > n_1$ such that
$$\mu \text{ (A} \cup E_{n_1} \cup E_{n_2}) < \mu \text{ (A} \cup E_{n_1}) + \frac{\varepsilon}{2^2} < \mu \text{ (A)} + \frac{3\varepsilon}{4},$$

In general, we take $n_{k+1} > n_k$ such that

$$\mu (A \cup (\cup E_{n_i})) = \mu (A \cup (\cup E_{n_i}) \cup E_{n_{k+1}}) < \mu (A) + (1 - \frac{1}{2^{k+1}}) \epsilon < \mu (A) + \epsilon.$$

$$i = 1 \qquad i = 1$$

Now we obtain a subsequence
$$\{E_{n_i}\}$$
 of $\{E_n\}$ such that $\mu (A \cup (\bigcup_{i=1}^{\infty} E_{n_i})) < \mu (A) + \epsilon$.

From Theorem 2.2 we know that μ is weak-autocontinuous from above. Similarly, if μ is autocontinuous from below, we can easily obtain the corresponding conclusion.

- 3). A quasi-measure is autocontinuous from above has been proved in [1].
- 4). Also in [1], it has been proved that a λ -fuzzy measure is a quasi-measure.
- 5). Suppose μ is λ -subadditive, for any $E_n \in F$, n=1,2,3,..., and $\mu(E_n) \rightarrow 0$, we take $n_1 < n_2 < \cdots < n_k < \cdots$, such that

$$\mu(\mathbf{E}_{\mathbf{n}_{1}}) < \frac{\varepsilon}{2\lambda}, \ \mu(\mathbf{E}_{\mathbf{n}_{2}}) < \frac{\varepsilon}{(2\lambda)^{2}}, \dots, \ \mu(\mathbf{E}_{\mathbf{n}_{k}}) < \frac{\varepsilon}{(2\lambda)^{k}}, \dots$$

Because μ is λ -subadditive, we have

$$\begin{array}{l} k \\ \mu (\ \cup \ E_{n_i} \) \leqslant \lambda \ \mu (\ E_{n_1} \) + \ \lambda^2 \ \mu (\ E_{n_2} \) + \ldots + \lambda^k \ \mu (\ E_{n_k} \) < (1 - \frac{1}{2^k}) \ \epsilon < \epsilon \ . \\ i = 1 \end{array}$$

00

Let $k\to\infty$, then μ (\cup E_{n_k})< ϵ , from Theorem 2.2 we know that μ is weak- autocontinuous k=1

from above at 0.

The following example shows that although weak-autocontinuity from above at 0 can be obtained from autocontinuity from above or λ -subadditivity, the former is actually weaker than the laters.

Example 2.4 Let $X = \{1, 2, 3, ...\}$, F = P(X)

$$\mu$$
 (E)=(CarE) $\sum_{i \in E} \frac{1}{2^i}$, $E \in F$.

We easily know that μ is a fuzzy measure and it is weak-autocontinuous from above at 0. In fact, for any $B_n \in F$, n=1,2,3,..., and $\mu(B_n) \to 0$, if there exists $m \in \overline{\lim} B_n$, then there exists $n \to \infty$

 B_{n_1} , B_{n_2} ,..., B_{n_k} ,..., such that $m \in B_{n_k}$, k=1,2,3,... From the definition of μ , we know that $\mu(B_{n_k}) \geqslant \frac{1}{2^m}$ k=1,2,3,...

So $\mu(B_n) \to 0$. It's a contradiction. That is to say $\lim_{n \to \infty} B_n = 0$.

But μ is not autocontinuous from above, this result has been given in [1].

Now we show that μ is not λ -subadditive.

Suppose there exists $\lambda_0 > 1$, such that $\mu(A \cup B) \le \lambda_0 (\mu(A) + \mu(B))$ for arbitrary $A,B \in F$. Now we take $E_1 = \{1\}$, $E_2 = \{m_1\}$, $E_3 = \{m_2\}$,..., $E_{n+1} = \{m_n\}$, where

$$\frac{\lambda_0}{2^{m_1}} < \frac{1}{2}, \ \frac{\lambda_0^2}{2^{m_2}} < \frac{1}{2^2}, ..., \ \frac{\lambda_0^n}{2^{m_n}} < \frac{1}{2^n}.$$

n+1

So we have
$$\mu (\bigcup E_i) = \mu (1, m_1, m_2, ..., m_n) = (n+1)(\frac{1}{2} + \frac{1}{2^{m_1}} + ... + \frac{1}{2^{m_n}}) > \frac{n+1}{2}.$$

On the other hand, if μ is λ -subadditive, we should have

n+1

$$\mu (\cup E_i) \leq \lambda_0 \mu (E_1) + \lambda_0^2 \mu (E_2) + ... + \lambda_0^{n+1} \mu (E_{n+1}) = \frac{\lambda_0}{2} + \frac{\lambda_0^2}{2^{m_1}} + ... + \frac{\lambda_0^{n+1}}{2^{m_n}}.$$

$$i=1$$

$$<\lambda_0(\frac{1}{2}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^n})=\lambda_0(\frac{1}{2}+1-\frac{1}{2^n})<\frac{3}{2}\lambda_0.$$

When we take $n > 3 \lambda_0 - 1$, we will have a contradiction. So μ is not λ -subadditive.

Theorem 2.5 If μ is weak-autocontinuous from above, then it is null-additive.

Proof. It is very evident when we take $E_n \equiv \Phi$, n=1,2,3,...

The following example shows that null-additivity is weaker than weak-autocontinuity from above. Example 2.6 Let $X=\{0,1,2,...\}$, F=P(X) and

$$\mu (E) = \begin{cases} \sum_{i \in E} \frac{1}{2^{i+1}}, & 0 \notin E. \\ & \infty, & 0 \in E \text{ and } E - \{0\} \neq \Phi. \\ & 1, & E = \{0\}. \end{cases}$$

Then μ is a fuzzy measure and it is null-additive (See [1]). But now we show that it is not weak-autocontinuous from above.

In fact, if we take A={0}, E_n ={n}, n=1,2,3,..., then μ (E $_n$) \rightarrow 0. Suppose{ E_{n_k} } is an arbitrary subsequence of {E $_n$ }, from the definition of μ we know

$$\mu (A \cup (\cup E_{n_k})) \equiv \infty$$
, but $\mu (A)=1$.

 $k=m$

This example shows that the concept of weak-autocontinuity from above is a concept between

autocontinuity and null-additivity.

3. Convergence Theorems

Theorem 3.1(Egoroff's Theorem). Suppose $A \in \mathbb{F}$, $\mu(A) < \infty$, and μ is weak-autocontinuous from above at 0. If

$$f_n \xrightarrow{a.e.} f$$
 on A, then $f_n \xrightarrow{a.u.} f$ on A.

Proof. Write $E_n^m = \bigcap \{x \mid | f_i - f | < \frac{1}{m} \}$, m=1,2,3,..., then $E_1^m \subset E_2^m \subset ...$ and i=n

 ∞ ∞

$$\{x \mid f_n \to f\} = \bigcap \bigcup E_n^m$$
. Let $B = \{x \mid f_n \to f\}$, because $f_n \xrightarrow{a.e.} f$ on A, so $\mu(B) = 0$, $m=1, n=1$

and $\cup E_n^m \supset A-B, m=1,2,3,...$ Thus $\lim (A-E_n^m)=A-\cup E_n^m \subset B$. From the monotoneity of μ n=1 $n\to\infty$ n=1

we have
$$0 \le \lim \mu (\lim (A - E_n^m)) \le \mu (B) = 0.$$

 $m \to \infty \quad n \to \infty$

Furthermore, from the continuity of μ and the condition $\mu(A) < \infty$, we can know that $\lim_{n \to \infty} \mu(A - E_n^m) = 0$ is true for every m = 1, 2, 3, ...

So for every m, there exists n_m such that $\mu(A-E_{n_m}^m) < \frac{1}{m}$. If we note $F_m = A-E_{n_m}^m$, then $\lim_{m \to \infty} \mu(F_m) = 0$. Because μ is weak-autocontinuous from above at 0, there exists a

∞

subsequence {
$$F_{m_i}$$
 } of $\ \ \{F_m\}$ such that $\ \mu\ (\cap\ \cup\ F_{m_i}\)\!\!=\!\mu\ (\Phi\)\!\!=\!\!0.$ Therefore, n=1 i=n

for every $~\epsilon > 0,$ there exists a subsequence (It's no harm to note it { F_{m_i} } ~ again)

such that
$$\mu (\cup F_{m_i}) < \epsilon$$
. Then $\{f_n\}$ converges to f uniformly on A- $\cup F_{m_i}$. $i=1$

In fact, for any ϵ '>0, we take i₀ satisfying $m_{i_0} > \frac{1}{\epsilon'}$, and we note $k=m_{i_0}$,

 ∞

then for every $x \in A - \cup F_{m_i}$, it satisfies $x \in A$ and $x \notin F_k$, therefore $x \in E_{n_k}^k$, that is to say i=1

00

$$\mathbf{x} \in \cap \{\mid f_i - f\mid <\frac{1}{k}\}$$
. So when we take $\mathbf{i} \ge \mathbf{n}_k$, it must have $\mid f_i - f\mid <\frac{1}{k} < \epsilon$ '. \blacksquare $\mathbf{i} = \mathbf{n}_k$

For the case of weak-autocontinuous from below we have the following result: Theorem 3.2 Suppose $A \subseteq F$, $\mu(A) < \infty$, and μ is weak-autocontinuous from below,

if
$$f_n \xrightarrow{a.e.} f$$
 on A, then $f_n \xrightarrow{p.a.e.} f$ on A.

Theorem 3.3 (Riesz's Theorem) Suppose $A \in F$, then $f_n \xrightarrow{\mu} f$ on A implies there

exists a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that $f_{n_k} \xrightarrow{a.e.} f$ if and only if μ is weak-autocontinuous from above at 0.

Proof.

Sufficiency. There is no harm in assuming A=X. For any $\{f_n\}$ and f, if $f_n \xrightarrow{\mu} f$ on A, then for every k=1,2,3,..., there exists f_n respectively, such that

$$\mu(\{x \mid f_{n_k}(x)-f(x) \mid \geq \frac{1}{k}\}) < \frac{1}{k}, k=1,2,3,...$$

Without any loss of generality, we suppose $n_{k+1} > n_k$, k=1,2,3,.... If we note

$$E_k = \{x \mid | f_{n_k}(x) - f(x) | \ge \frac{1}{k} \}$$
, then $\lim \mu(E_k) = 0$. As μ is weak-autocontinuous $k \to \infty$

from above at 0, there exists a subsequence { E_{k_i} } of { E_k } , such that

If x
$$\in$$
 X $-\cap \cup E_{k_i}$, then x $\in \cup \cap E_{k_i}^c$. So surely there exists j(x) such that n=1 i=n n=1 i=n

$$\mathbf{x}\in \stackrel{\infty}{\cap} E_{k_i}^c$$
 , that is to say $\mid f_{n_{k_i}}-f\mid <\frac{1}{k_i}$ when $\mathbf{i}\geqslant \mathbf{j}(\mathbf{x})$. This conclusion means $\mathbf{i}=\mathbf{j}(\mathbf{x})$

we have proved the following result:

For every given $\varepsilon > 0$, we first take i₀ such that $\frac{1}{k_{i_0}} < \varepsilon$, then we take $i \ge j(x) \lor i_0$, now we have

$$\mid f_{n_{k_i}} - f \mid < \frac{1}{k_i} \leq \frac{1}{k_{i_0}} < \varepsilon$$

and
$$\{x \mid f_{n_{k_i}} \xrightarrow{} f \} \subset \cap \cup E_{k_i}$$
. So, $f_{n_{k_i}} \xrightarrow{a.e.} f$.
$$n=1 \text{ i=n}$$

Necessity. Suppose E_n \in **F**, n=1,2,3,..., and μ (E_n) \rightarrow 0. We want to prove that there exists a

subsequence $\{E_{n_i}\}$ of $\{E_n\}$ such that $\mu (\cap \cup E_{n_i})=0$. m=1 i=m

Let
$$f_n(x) = \begin{cases} 1 & x \in E_n, \\ 0 & x \notin E_n, \end{cases}$$
 and $f(x) \equiv 0.$

Evidently, $f_n \xrightarrow{\mu} f$. From the hypothesis of the theorem, there exists a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that $f_{n_k} \xrightarrow{a.e.} f$. That means $\mu(\{x \mid f_{n_k} \xrightarrow{} f\})=0$.

Note
$$\cap \cup E_{n_k} \subset \{x \mid f_{n_k} \longrightarrow f \}$$
, the conclusion follows.
 $m=1 \text{ k=m}$

In paper [2] and [4], properties of measurable functions were discussed by using the properties of μ . But the necessity of theorem 3.3 tells us that we can use the properties of measurable functions to discuss the properties of μ .

For the case of weak-autocontinuous from below, we have the following result:

Theorem 3.4 Suppose $A \in \mathbb{F}$, then $f_n \xrightarrow{\mu} f$ on A implies there exists a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that $f_{n_k} \xrightarrow{p.a.e.} f$ if and only if μ is weak-autocontinuous from below. The proof is similar to Theorem 3.3.

Until now, we get weaker conditions than [2,4] to satisfy Egoroff's theorem and Riesz's theorem.

References

- [1] P.R.Halmos, Measure Theory (Van Nostrand, New York, 1967).
- [2] Wang Zhenyuan, The autocontinuity of set function and the integral, J. Math. Anal. Appl. 99 (1984) 195-218.
- [3] Wang Zhenyuan, Asymptotic structural characteristics of fuzzy measure and their applications, Fuzzy Sets and Systems 16 (1985) 277-290.
- [4] Zhao Ruhuai, (N) Fuzzy integral, Mathematical Research and Exposition (in Chinese), 2 (1981) 55-72.