The Fuzzy Entropy Method Differentiating Types of the Same Illness

Liu Huaven

Department of Mathematics and Physics, Shandong University of Technology, Jinan 250061, P.R. China

Liu Huagong, Wang Hong

Binzhou Hospital of Traditional Chinese Medicine, Binzhou 256613,

P.R.China

Abstract: Using fuzzy entropy, we establish the model differentiating types of the same illness. Further, we give a case of illness.

Keywords: Fuzzy entropy, set of signs, sign expression.

1. Introduction

We usually meet thus illnesses which have similar, weak typical sign expressions in clinical diagnosis. It brings definite difficulty to differentiating the types of illness. In this paper, we give a valid diagnosis method in terms of fuzzy entropy. When a life system has a change from a normal state to abnormal state, the degree of non-organization and non-sequence in the system increase. Hence, the fuzzy entropy increase.

2. Model of differential diagnosis

2.1 Matrix of fuzzy relation between sign expressions and illnesses.

Let $D=\{D_1,D_2,\cdots,D_n\}$ denote the set of types of illness. From clinical experience, we set the signs set $S=\{s_1,s_2,\cdots,s_m\}$. There are k sign expressions for each s_i (The value of k probably different for different signs). i.e., $s_i=\{s_{i1},s_{i2},\cdots,s_{ik}\}$. Let the number of all sign expression be q.

The relation between illness and its sign expression is a non-fixed. We can establish the relation using fuzzy statistics.

Now, we establish the matrix $R_{n \times n} = (r_{n,j})$ of fuzzy relations between illnesses and their sign expressions $(p=1,2,\cdots,q;j=1,2,\cdots,m)$. Let the sign expression s_{12} be

located in p-th row of matrix, then $r_{p,j} = \frac{c}{d}$. Where c denotes the number of the patients with sign expression $s_{i,1}$ in the patients suffering from illness D_{j} . The d denotes the number of the patients suffering from illness D_{j} .

2.2 Differential diagnosis

First, we can get the set $\{s_{i1}\}$ of sign expressions from a patient. The value of sign expression s_{i1} to diagnosing illness D_J could be described by the membership degree μ $D_J(s_{i1})$. If μ $D_J(s_{i1})$ is greater, then the value of sign expression s_{i1} to diagnosing illness D_J will be greater. The value of sign expression set $\{s_{i1}\}$ to diagnosing illness D_J can be described by fuzzy entropy

$$H(D_3) = \frac{2}{\sqrt{m}} \left(\sum_{i=1}^{n} (\mu D_3(s_{i,1}) - \mu 0D_3(s_{i,1}))^2 \right)^{\frac{1}{2}}$$

where.

$$\mu \text{ 0D}_{3}(s_{11}) = \begin{bmatrix} 0, & \text{if } \mu \text{ D}_{3}(s_{11}) < 0.5 \\ \\ 1, & \text{if } \mu \text{ D}_{3}(s_{11}) > 0.5 \end{bmatrix}$$

The μ D_J(s₁₁) can be obtained from the matrix of fuzzy relation between sign expressions and illnesses. Supposing that s₁₁ is located in p-th row of matrix, then μ D_J(s₁₁)=r_{p-J}. From above, we can set μ OD_J(s₁₁). Hence, we get H(D_J). If H(D_{JO})=max {H(D₁),H(D₂),...,H(D_n)}, then the patient suffers from illness D_{JO}.

3. Case of illness

Now, there is a patient, the male sex. We have known that this patient suffers from chronic blocked consumption from his symptoms. But, this illness has three types: pulmonary emphysema type, bronchitis type and mixed type. The sign expressions of these three types are similar. In the following, we differentiate the type of this illness using above model.

We get this patient's sign expression set S={ s_{11} , s_{21} , s_{32} , s_{42} , s_{51} , s_{62} , s_{71} , s_{81} , s_{92} , $s_{10.2}$, $s_{11.2}$, $s_{12.2}$, $s_{13.2}$, $s_{14.1}$, $s_{15.2}$, $s_{16.2}$, $s_{17.2}$, $s_{16.2}$, $s_{16.2}$, $s_{16.2}$, $s_{20.2}$, $s_{21.2}$ }. Here, the meaning of each s_{11} is omitted. The set of illness types is $D={D_1(pulmonary emphysema type)}$, $D_2(bronchitis type)$, $D_3(mixed type)$ }. Using above method, we get the matrix of fuzzy relation between sign expressions and illnesses as follows

	D_1	D2	D ₃
811	_ 0. 7940	0.2842	0.9020 ¬
881	0.9212	0.3333	0.6818
S32	0.1548	0.6278	0.4167
S42	0.2846	0.7751	0.5435
S61	0.7623	0.2690	0.6923
Sez	0.2745	0.7200	0.4423
S71	0.8780	0.1667	0.7500
Se1	0.8663	0.1524	0.6538
Se2	0.0850	0.7455	0.3334
S10.2	0.2490	0.8776	0.1875
S11.2	0.2490	0.7947	0.0189
S12.2	0.8382	0.1527	0.5294
S13.2	0.3224	0. 854 7	0.5455
S14.1	0.7767	0.1 685	0.6818
\$15,2	0.1842	0.5065	0.4423
S16.2	0.2332	0. 8500	0.4375
917.2	0.0837	0. 7353	0.4000
\$18.2	0.1867	0. 760 7	0.1176
S19.2	0. 2384	0.8800	0.5000
S20.2	0.1481	0.8223	0.0010
S21.2	L 0.1422	0.8812	0.4792

From above matrix, we get

 $H(D_1)=0.4040$, $H(D_2)=0.4812$, $H(D_3)=0.7148$.

Hence, this patient suffers from mixed chronic blocked consumption. This result consist with clinical diagnosis.

References

- [1] Chen Guozhens, Internal Medicine. The people's health press. Beijing (1985) 27-30.
- [2] Zhou Huaiwu, Mathematics in Medicine. Science press. Beijing (1986) 264-270.
- [3] Luo chengzhong, Introduction to Fuzzy Sets. Beijing Normal University press. (1989) 100-113.
- [4] He Xingui, Theory and Technology Attending to Fuzzy Informations. Defence Industry press. (1994) 29-36.
- [5] Liu Huawen, The Solution of a Special Generalized Fuzzy Relation Equation. J. of Shandong University of Technology. 3(26)(1996), 280-282.