89

Linguistic neurocomputing

*Giovanni Bortolan and **Witold Pedrycz
* LADSEB - CNR
Corso Stati Uniti, 4, 35020 Padova, Italy

**Computational Intelligence Laboratory
Department of Electrical and Computer Engineering, University of Manitoba,
Winnipeg, Canada R3T 2N2

Abstract A process of information granularization takes care of an enormous flood of numerical
details that becomes summarized and hidden (encapsulated in the form of fuzzy sets) at the time of the
design of a neural network. This substantially reduces the amount of training as the designed
network needs to deal with a substantially reduced and highly compressed number of data that falls
far below the size of the original training set. The same granularization mechanism delivers some
highly advantageus regularization properties. The necessary effect of information granularization is
accomplished in the framework of fuzzy sels, especially via context - sensitive (conditional) fuzzy
clustering. Subsequently, the resulting neural network becomes an architecture with non-numeric

connections. A thorough analysis of results of computing carried out in the setting of linguistic
neurocomputing is also given.

1. Introductory remarks

The issue of an efficient learning has been a focal point of a vast number of research endeavors in the
area of neurocomputing. A toolbox of currently available training models is highly impressive. The
main research agendas include various important tasks such as an efficiency of learning and
generalization abilities of the designed networks. The always growing dimensionality of the problems
tackled by neural networks along with an inevitable increase of the size of the training data
accompanying these tasks make the learning more challenging. The technology of fuzzy sets has
already contributed to the development, learning, and interpretation of neural networks. What becomes
also a common denominator of all these approaches and enhancements is a strikingly dominant
observation about the role of fuzzy sets in neurocomputing. By and large, fuzzy sets tend to look at
data from a new and somewhat general standpoint; we would like to exploit these new characteristics of
data in an attempt to increase robustness and augment learning capabilities. One should become aware
- that the ensuing optimization occurs at the numeric level (no matter in which way fuzzy sets enhance
the original formulation of the problem).

The underlying objective of this study is to make the contribution of fuzzy sets more visible and
radical in comparison to what has been alrcady cxerciscd in the literature. We depart from a purcly
numeric oricnted style of the design of ncural networks and revisit this very development problem at
the non-numeric level. Here non-numeric information granules (especially fuzzy sets) arc formed as a
result of some sound summarization of the original numerical elements of the training sct and made
these granules dircctly available to ncural nctworks for design purposcs in licu of the original numcric
data sct.

In what follows, we consider multivariable problems where neural networks have to deal with
-mappings from n - dimensional rcal space to (he output being a subsct of reals. In what follows, we
denotc the training sct as {(x(k), y(k))}, k=1, 2, ..., N, where x(k) € R? and y(k) € R. The paper
cxploits a standard notation of fuzzy scts; for some bricf introduction to the subject the reader can refer
to onc of the currently available texts (Klir and Folger, 1988; Pedrycz, 1995). The key conceptual
notion used throughout the study concerns information granularity and granularity of fuzzy sets, in
particular (Zadeh, 1979; 1994). The quantification of this notion could bc donc in many ways
(including some associated notions such as sct specificily).

2. Modes of utilization of training data in ncural networks
As far as different modes of utilizing training data in the learning ncural networks are concerned, we can
distinguish between three main groups as portrayed in Fig. 1.
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Fig.1. Modes of utilization of training data in neurocomputing:
direct use (a), nonlinear preprocessing (b), information granularization (c)

L The direct use of raw data forming the training set, Fig.1(a). This is one of the most frequent
approaches one can encounter in the area of neurocomputing. Essentially, all available data are fed into
the network that, through its supervised learning, develops a relationship (mapping) between the inputs
(input variables) and the output that is consistent with the training data (in other words, the mapping
approximates the data set). The only very limited preprocessing of the data that may eventually take
place arises in a form of a straightforward linear normalization of the input variables. There is an
abundance of literature on this way of utilization of the training data (Zurada, 1992; Hassoun,1995).

2. The usc of non lincarly preprocessed training data, Fig. 1(b). The crux of this methodological
avenue pursued in neural networks is to carry out some preprocessing of the training data with an
intent of enhancing the learning abilities of the original neural network and accelerating its pace of
learning. Radial Basis Function (RBF) neural networks are an excellent example of such structure
equipped with preprocessing activities. What happens there is a process of a well-defined nonlinear
normalization and a suitable transformation of the input data realized in order to simplify both the
architecture of the network and make its learning more efficient. The granularity and distribution of
RBFs are the two key components predetermining a success (or failure) of the RBF neural network. In
fact, the existing literature (Zurada, 1992; Hassoun, 1995) reports on faster learning of thc RBF ncural
networks and underlines some features of the lcaming such as an ability to avoid local minima.

[ iz ing data, Fig. 1(c). This approach is radically different from the

two already discussed and as such departs from the concepts of learning that is completed at the
numeric level. Essentially, the training of the ncural nctworks is completed in presence of non numeric
information. Thus the admitted elements of the training sct could be fuzzy sets, scts, numeric intervals,
or alike. The highly reduced training sct contributes a lot to the faster training and results in a more
compact ncural network., One point to be made clear concerns the use of this type of the designed
networks. In general, such nctworks arc not compatible with the constructs developed throughout the
first two types of lcarning. They will not compele on a basis of numeric accuracy. In fact, it would be
absolutcly unfair to expect that the network being traincd on data of lower granularity will perform
cqually well on numeric data.
. These three groups of learning become somewhat complementary as far as the underlying information
granularity and the ensuing computational effort are concerned. The first two are the highcst in terms of
the computational effort required and the highcest (numeric) information granularity associated with that.
For the third mode, the computational effort becomes reduced while, simultaneously, the granularity
concerned stays lower. The original numeric data are prudently summarized thus giving rise to non
numeric elements (fuzzy sets). It is important to note that the cardinality of this new data set is far
lower than the original one including only numeric pairs.

3. Context-sensitive fuzzy clustering

In what follows, we concentrate on the contextual Fuzzy C - Means (FCM) (Pedrycz, 1996). The
method was also discussed in the setting of knowledge discovery and data mining (Pedrycz, 1997).
The conditional aspect (context sensitivity) of the clustering mechanism is injected into the algorithm
by taking into consideration an auxiliary context (conditioning) variable defined in Y. For this context
variable, we define a fuzzy set of context
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AY > [0,1]

The original data xi are augmented by this auxiliary variable, say yk, producing a new vector denoted
now as [xk yk]. We also assume that the values of context for the given data (patterns) are available
and equal to f1, f2, ..., fN. The value fik = A(yk) connotes a level of involvement of the k-th data
element in the assumed context. The way in which fi can be associated with or allocated among the -

computed membership values of xi, say ujk, u2k, ...,uck, is not unique. Here, we admit fk to be
distributed additively across the entries of the k-th column of the partition matrix meaning that

C
Y, v =fy
i=1
¢y

k=1, 2, ..., N. Bearing this in mind, let us modify the requirements to be met by the original
partition matrices and define the new family of matrices

c N
2(f)={ v € [0, 111 2 u=fx Vx and 0 < Z ux <N Vil
i=1 k=1

Note that the standard normalization condition standing in (1°) is replaced by the involvement
(conditioning) constraint. The optimization problem is now reformulated accordingly (Pedrycz, 1996)

minU¢ V1,¥2, .4V Q

subject to
U € U
¥))
Again the minimization of the objective function is carried out iteratively where
f

Uik = -c-—-—k-———
Z (lek- Vill)z
j=1 lek- Vj"

i=1, 2, ..., ¢, k=1, 2, ..., N. We arrive at thc abovc formula by transforming (4) to a standard
unconstrained optimization by making usc of Lagrange multiplicrs and determining a critical point of
the resulting function. The computations of the prototypes arc the samc as for the original FCM
method. Moreover, the convergence conditions for the method are the same as thoroughly discussed for
the original FCM algorithm (Bezdek, 1981).

4. Fuzzy neural networks

Our main thrust in the design of a fuzzy neural network is to support processing of linguistic (non
.numeric) information. Bearing this in mind, we admit the individual inputs and outputs to be fuzzy
sets rather than numeric quantities, Fig. 1. More specifically, we confine ourselves to the class of fuzzy
sets with trapezoidal membership functions. This choice is fully justified considering the generality of
such constructs regarded as reasonable models of uncertain quantities along with the ensuing
straightforward computations. In particular, trapezoidal or triangular fuzzy sets have already been
recognized as versatile models in the technology of fuzzy sets.




92

Fig. 1. Neural network with its inputs and outputs regarded as trapezoidal and triangular fuzzy sets

In the discussed model of the network, we use a slightly different description of trapezoidal fuzzy sets.
Instead of the commonly utilized notation, T(x; a, b, ¢, d), we introduce the notation T" (x;b,c,ab)
where a and b are two explicitly articulated spreads of the fuzzy set, Fig. 2.

Q. B
b b c c+fp
Fig.2. Fuzzy set T" (x; b, ¢, a, b) - a basic notation

>

As in the previous notation "b" and "c" describe the core part of the fuzzy set. By a fuzzy neuron, we
mean a processing unit with fuzzy inputs and fuzzy outputs, all being modeled as trapezoidal fuzzy
sets. The weights that characterize the connections between the nodes are represented by four
coordinates (bw, Cw, aw, bw), one for every defining point of the trapezoidal fuzzy sets (to simplify
notation, we have dropped the indexes indicating the individual nodes of the network).

7(net; bnet‘ net’ mnet' pnet)

7(Wi by, Cy, 0y, By)

> f F—>»
7(x; by, ¢ 00, B) net 705 by, ¢y Oy, B)

Fig.3. Fuzzy ncuron - notational details

The output of the neuron can be approximated as a trapezoidal fuzzy set; we enumerate two phases of
this construct:

- first a weighted sum is formed as T" (net; bpet, Cnet, anet, bnet) Where

Bret =, bu(bx()  Cpet =), Culi)ex(i)
i i

Otnet =2, Ow(D0x(D)  Bret =2 Bu(DBx(i)

and "n" denotes the number of the inpults; the index (i) pertains to the number of the connection and the
" associated input. This trapezoidal fuzzy set should satisfy the obvious constraints

bnet < Cnet,

anet 2 0, bnct 20

Assuming that the inputs are given, the constraints translate into a number of admissiblc strategics
regarding the changes of the connections of the nctwork. In Bortolan (1997) discussed were a number of
strategies governing the changes of the connections that retain this consistency condition. Here we
proceed with a two-stage mode starting from all coordinates being equal (that is, by =cw = ay = bw)
and allowing them to become different afterwards (that occurs over the progress of the training).
-secondly, the trapezoidal fuzzy set of the weighted sum becomes transformed nonlinearly via an
activation function (f), Fig.3. To retain a homogeneous computing environment, we approximate the
result as a trapezoidal fuzzy set T" (y; by, ¢y, ay, by) with the parameters computed as
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T" (y; by, ¢y, ay, by) =
=(y; f(bnep), f(Cnep), f(bnep) ~f(bnet - anet). f(Cnet + bney) -fCnet ))

The neural architecture to be used is feedforward and formed by the neurons with the fuzzy connections;
we will be referring to this topology as a fuzzy neural network.

S. The design of the fuzzy neural network

The contexts and the resulting prototypes in the input space are directly used towards the construction
of the fuzzy neural networks. Note that the contexts are already non numeric quantities. We would like
to summarize the input data in the same way. The simplest option to be pursued deals with trapezoidal
(triangular) fuzzy sets formed around the numeric prototypes of the clusters. As, in fact, all
membership values are available through the partition matrices, it is quite straightforward to
approximate them as trapezoidal membership functions. The idea of this approximation is illustrated in
Fig.14. We construct the segments of the membership function through the experimental membership
values by optimizing the knots of the trapezoidal function. The optimization is completed separately
for the knots situated at the left and right hand side of the prototype, Fig.4.

b-o b prototype c c+p
Fig. 4. Approximation of the membership functions with the use of experimental data - a, b, ¢, b are
the parameters to be determined

All of these membership functions form the training family of input - output fuzzy sets. Remarkable is
the reduction of its size in comparison to the original training set composed of numerical values. The
obtained size of the new training set is equal to the product of the number of the clusters for the
individual contexts, namely c1c2...cp. Considering that the number of contexts is usually limited to
. around 5 and assuming the same number of clusters (c) for each context, we get ¢ elements in the new
condensed training set.

There are some implementation issues worth hightighting:

- the choice of the fuzzy sets of contexts. These fuzzy sets are the starting points of the entire
summarization process and, as such, should be prudently selected to become meaningful in the learning
process. Obscrve several obvious facts:

() if A CA' (that is A(y) < A'(y)) forall y in Y, then the cardinality of the elements to be clustered
under the first context is lower than in the sccond scenario. In limit, if A(y) =1 forall y in Y, we end
up with a context - free clustering. If, however, A gets very specific, that is A(y) =1 fory € [yg, yo+c]
with ¢ being a small positive constant, then the process of clustering could be meaningless as tagging
only a very few data points to be summarized.

(i) for a two-class classification problem, where A(y) €{0, 1}, this particular context implics the

clustering of data belonging to the samce catcgory. The clusicring can be regarded as a prerequisite to
“the design of two-valued ncural classificrs.

-as we have stressed, the choice of Ajs should reflect the needs of the neural network, If we would like
to focus on some subregions of the outpul variable, there should be some fuzzy scts of context
capturing this intent. They could be eventually of higher granularity in comparison to some other less
interesting rcgions of the output variable. In any case, we should be aware that defining a vacuous
context (that is such for which there are no or very few data in the training set) defeats the purpose of
having this context at all. Evidently, the ncural nctwork will not be able to do any training as there is
no input for this particular context. Thus it is worthwhile to compute the sum

N
> Aly)
l=1
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that reflects how much the given context is supported (activated) by the current training set. To make
the context A meaningful we should require that this sum becomes different from zero or exceeds a
certain minimal threshold value,

- the choice of the number of clusters c(1), c(2), ..., c(p) is a general problem coming with any
clustering method. The use of some cluster validity indexes (Bezdek, 1981) can offer some help.
Again, the number of clusters could vary depending upon the size of the information granule of the
context triggering this clustering.

The produced linguistic data are directly used to train the fuzzy neural network. Even though the
network looks simple, it is inherently nonlinear. The nonlinearity resides within the receptive fields

themselves as well as the summation effect completed at the level of the fuzzy sets of the connections is
nonlinear.

6. Numerical studies

The experimental study deals with a real-world problem of Boston housing data. The data set is
available from the machine learning site at the University of California at Irvine
(http://www.ics.uci.edu/~mlearn/MLRepository.html ). The data set deals with housing conditions
encountered at several suburban areas of Boston. There are 13 input variables; these include factors such
as crime rate (x1), nitric oxides concentration (x5), student - teacher ratio (x1}), price of real estate
(x13). For more details consult the description of the dataset at the above site. The context we are
interested in are the prices of houses that fall under three naturally acceptable categorics, all in $1,000:

- low real estate price described by the T(y, 0, 5, 15, 20)

- middle range real estate price characterized by T(y, 15, 20, 25, 30)

- high range of real estate prices defined by T(y,25, 30, 50, 55)

These naturally reflect our perception of the linguistic categories (contexts) in this particular real estate
problem. More importantly, by selecting some other linguistic terms, we can model a certain
requirements about the problem or a way in which we would like to explore the data and focus the
ensuing training of the neural networks. For instance, one would be interested in a particular price
range that should be emphasized and attempt to make it more restricted, say around 15K $, around
45K $, etc. This will call for some specific contexts introduced into the model. Some other eventual
modeling request would be to focus the training of the network on the broad range of low prices and
eventually make the range of high prices relatively narrow. All of these settings of the linguistic
contexts underline a proactive role of the network's designer in the utilization of the data and the
customization of the neural network.

Discussing the already defined three context (low, medium, high prices), the conditional clustering is
performed with four clusters allocated per class. The distance function used in the clustering is
compuicd using normalized inputs. Aficr the linguistic summarization at the input lcvel, we end up
with 12 elements of the training set to be used by the fuzzy neural network - a substantial 50-fold
reduction in comparison with the original numerical data sct. It would be a nuisance to report on the
cntire linguistic data sct; here we restrict oursclves to the four arbitrarily sclected inpuls (input
variables) such as
X} = crime rale
X§ - nitric oxides concentration (parts per million)

. Xg - weighted distances to five Boston cmployment cenicrs (in milcs)
X11 - student - teacher ratio
We fecl that these variables could be of particular interest as meaningful factors distinguishing between
the formulated categories. The prototypes of the clusters are summarized in the tabular form below

crime ratc low price middle price high price
cluster| 11.685 0.558 0.987
clusterp 1.7434 0.183 0.727
clustersy 18.466 5413 0.990
clusterg 10.185 0.333 0.123
nitric oxides conc., low price middle price high price

clustery 0.687 0.542 0.526



cluster)
cluster3
clustery

weighted distance
cluster]
clusterp
cluster3
clusterg

student -teacher ratio
cluster
clustery
clustery
clustery
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0.556 0.440 0.502
0.689 0.641 0.527
0.693 0.493 0.421
low price middle price high price
2.089 3.288 3.411
3.908 6.720 3.823
1.672 2.765 3.406
1.908 4.505 6.547
low price middle price high price
20.04 : 18.55 16.60
20.00 17.57 16.98
19.81 19.88 16.59
20.00 18.67 15.82

The results for this reduced subset of inputs are also given in the form of the trapezoidal membership
functions, Fig. 5 (Jow price- class#1, middle price - class#2, high price - class#3). In fact, these fuzzy
sets are far more illuminating than the single numerical values of the prototypes themselves.
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Fig. 5. Linguistic representation of prototypes of selected input variables

The findings one can easily summarize from these fuzzy sets are intuitively appealing. For the class of
real estate staying in the range of the lowest prices, we get a relatively high crime rate. Note that even
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though the modal values of the crime rate are not that high, the long tails of the membership functions
stretch to much higher values when compared with some other categories. The crime rates for the two
remaining classes are lower and the corresponding membership functions are quite narrow and
concentrated around the modal values. The environmental conditions (expressed via a nitric oxide
concentration) also worsen for the first class. For the third class of real estate, we get fuzzy sets of far
lower spread than those occurring in the second category. The dwellings of the first category are close
to the employment centers, The distribution of the distances for the second category is more spread
while all the clusters in the third category of the most expensive houses are located at a similar distance
from the employment centers yet this distance is almost two times higher as in the first class. This
explicitly reflects the preferences of this community underlying that the people do not prefer living too
close to their workplace. Finally, the student - teacher ratio happens to be an important indicator of the
standard of living. For the third category this ratio is far lower than in the first category. The second
category locates somewhere in-between with several clusters characterized by different values of this
ratio.

The same data set was processed using a standard feedforward neural network with a single hidden layer
with h=13 nodes in this layer; each neuron was equipped with a standard sigmoidal element. The
training took 100,000 learning epochs. The comparison of the learning effort expressed in terms of the
training epochs is misleading, though, because of the different sizes of the training sets involved.
Instead, it is far more legitimate to compare the CPU time used for the training: on a VAX 4000/600

it took 50'12" to train the fuzzy neural network versus 6142 42" (o train the network with the original
data set. Thus the achieved speedup is at the range of 8.02 times. -

7. Conclusions

We have proposed a new architecture of fuzzy neural networks, delivered its complete leaming scheme
and offered a new type of linguistic computing in the setting of neural networks. The study supports
the commonly (yet not vigorously experimentally justified) claim that fuzzy sets do indeed contribute
to the reduction of otherwise immense computational effort. The study shows that the training of fuzzy
neural networks with summarized data rather than working with the individual elements of the input -
output data cuts the required training time. Obviously, the granularity of the processed information is
lower than the one originally residing within the training data. This, in tumn, implies that the results of
such linguistic processing are genuine fuzzy sets. There is no much sense analyzing the performance of
the network at the purely numeric level as the structure has never been geared towards this level of
processing. On the other hand, the processing at the linguistic level makes the network transparent and
the patterns describing the linguistic data become readily available. Further impact of this methodology
on data mining and interpretation of neural networks is inevitable and highly promising.
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