LEARNING ALGORITHMS WITH PRESCRIBED WEIGHTS
FOR ALGEBRAIC FNN

D. Arotaritei', H. N. Teodorescu®
Institute for Computer Science, Romanian Academy, Iasi, 660, Romania
e-mail: 'dragos@jit.iit.tuiasi.ro, *hteodor@tuiasi.ro

ABSTRACT: The basic principles of the algebraic fuzzy neural networks with fuzzy weights using
two learning algorithms (trial-and-error and adapted gradient) are presented. A modified multilayer
architectures, in order to be used for economic applications are considered. The fuzzy weights can be
fuzzy numbers (usually non-symmetric) and trapezoidal fuzzy numbers. The network is able to map
a vector of trapezoidal (triangular) fuzzy numbers into any other vector of trapezoidal (triangular)
fuzzy numbers. '

KEYWORDS: algebraic fuzzy neural networks, trapezoidal fuzzy weights, trial-and-error
algorithm, adapted gradient algorithm.

1. INTRODUCTION

Various approaches of fuzzification of the neural networks have been proposed. Some of
them use fuzzy logic, implementing if-then rules, others use arithmetic fuzzy numbers [1-3]. A
recent class of neuro-fuzzy system is based on neural network topology and fuzzy algebraic systems
[3-5]. Two different approaches of arithmetic fuzzy neural network have been proposed in [1-2] and
respectively in [3-5].

Ishibuchi [1-2] proposed an architecture of multilayer feedforward algebraic neural network
for fuzzy input vectors. The output of this fuzzy neural network is a vector of fuzzy numbers. The
input-output relations in this fuzzy neural network, based on max/min operators, are defined by the
extension principle of Zadeh. In these papers, the authors used only symmetric triangular fuzzy
numbers [1-2). The learning algorithm, based on the cost function, uses a gradient descent method.

A potential application of the Algebraic Fuzzy Neural Network (AFNN) is the modelling, for
instance economic process modelling [6-7]. In such application, the structure of the process can
impose specific constraints, such as zero-valued weights, or weights having given values (during all
learning stages). An AFNN with Trial-and-Error (TE) or Adapted Gradient (AG) leamning algorithm
can be used to fit the input-to-output existing data and moreover to perform a mapping that fits the
equations of the process. In such a case, the AFNN can be used to determine the coefficients of the
equations in the model [6-7]. Note that different nonlinearities with saturation can be accepted in the
model of the neuron, because the nonlinearity type does not essentially changes the TE algorithm.
Finally, note that even if the flow of variables in the modelled process is not exactly known, the
AFNN can help in proposing models of the process, starting from the input-to-output data. This
applied topic is now under investigation.

In this paper we deal with an algebraic fuzzy neural network with a modified multilayer
topology. The fuzzy algebraic rules are applied in a similar manner as in [4-7]. All the operations are
defined in the frame of fuzzy arithmetic and one uses triangular fuzzy numbers (usually non-
symmetric) with o-cuts, or trapezoidal fuzzy numbers. We briefly present the two algorithms [4-7],
and we discuss the performances for an algebraic fuzzy neural networks with modified multilayer
topology for used in economic applications.

83

2. THE ALGEBRAIC FUZZY NEURON AND NEURAL NETWORK ARCHITECTURE
The h-level set of a fuzzy number X is defined as:

(X, = (xluy (X2 h,h e 1} for O<h <1 8))

In what follows, X, = (xlﬁ,xﬁ ,xl}}) denote triangular fuzzy numbers for h-level set. Let
bezh"(ahL’ahc’ahR)’ §l\ =(th ’hlc,bhk)’ 6|l=(°|1L’ Chc,chk),Where Ch=Ah* Bl\,

C, is the h-level for a triangular fuzzy number (TFN), and * is a non-standard algebraic operation
defined by:

chL= min{ahl‘ * th, ahL * th, ahR * th, ahR * th }
C _ [C
Ch = a8 *bp (2

cut= max{ ay’ * by, ay” * bk, ap® « by, ank * bR}
Above, *e{+, -, o} are the operations in classic arithmetic, and *e {F, =, ¢} are the
corresponding modified operations in fuzzy arithmetic, defined according to (1). Similar relations can
be used to get the a-cuts (see below). The basic algebraic fuzzy neuron (Figure 1), is based on the

operations defined above. The values q;(shl‘,shc,sh) are computed, using the modified extension
principle (1)-(2), as in Fig, 2:

~

B =%y, T Wy, FRyy T Wy T TRy T, F Oy (3)
Y = 0(3) = (@65, 9(s5). 9(s1) @
The algebraic fuzzy neural network (AFNN) has a multilayer feedforward graph and uses

algebraic fuzzy neurons (FN) [3-6]. The symbols X;,, W;y, and '6,, stand for fuzzy inputs, fuzzy
weights and fuzzy biases, respectively for a given A-level.

LIS

3. % * & §
Samid o(zh%)
>
A -level :
—]

oo gL 5 s X

Fig. 1: The fuzzy neuron Fig. 2: The fuzzy activation function

The input-output relation in the AFNN, using triangular fuzzy numbers (TFN) and the rules
(1)-(3) is straightforward to develop:

84

~k - ~k—1 ~~k ~~_
Xj = "’(‘T-‘ nay iy Wiy, ¥ Oiy))
where k is layer number, j is the j neuron from k layer and i is the i neuron from k-1 layer.

3. LEARNING ALGORITHMS
3.1. Trial-and-Error (TE) algorithm for A-level

The algorithm is as follows. First, the central (w°) value of fuzzy weights is obtained by BP
algorithm. For each A-level, we set the w* , w° and w" values at previous 4-1 of corresponding
values obtained by a completely cycle of learning. We adapt the W' and w* values for this level by
TE algorithm, until we reach the stop condition (for h-level). At each iteration we adapt the weight
only if the condition Wi < Wi" < Wi1® = WaC <Wai~ <Wy" is satisfied. This procedure is repeated
until we reach the adaptation of the last h-level (base of TFN). The fuzzy biases o, p=L,C,R, are
changed in the same manner.

Remember that a trapezoidal fuzzy mumber can be defined as X=(x" ' x% x%),
xL <x <x R <x®, p(x™)y=1, W(x™)=1. Therefore, the leaming algorithm for such fuzzy number
includes an additional BP stage for the values x°®, Hence, first we adapt w* ,w"" and w* values of
weights by TE algorithm as in TE for TFN. Next, we adapt the w™ values by BP algorithm using BP
algorithm, with the respect of relation w™ < w™ <wF,

3.2. Adapted Gradient Algorithm (AG) for h-level

From (1), (2) and (3), it can be seen that the central values (C) of the variables operated by the
AFNN are not linked to the left (L) and right (R) values of the corresponding triangular fuzzy
numbers, Hence, the central values of weights (w®) can be adapted by a classic backpropagation (BP)
algorithm [2-4].

Because the w* and w® values are linked by min/max operators, the error term is not derivable,
and a gradient algorithm needs a special technique. A strategy to adapt the left and right values of the
weights is adapted gradient (AG) described below. The cost function (square error term) is
classically defined by (similarly to [1]), for an A-level:

n n
En =EBE +ER =1/2. 2} -yl)2 +1/2. 2@ -y)? (6)

i=l i=l
In the equations below, M(x)::R~-»[0,1] is chosen to be:

() = {° for x20 0 ()= 1/(1+exp(Bx)) with B=500-1000)
1 for x<0

Note that for a crisp neural network (when w*=w®=w* and x*=x°=x"), the AG algorithm
represents a particular case, the classic BP. The extension of fuzzy arithmetic to h-level sets is
straightforward, as below:

85

Wiat+D) =W +Awk (1), Wia+D=wE L) +AWS L) (8)

AW5in = A -85y -[xip +n(Wiin) - [—xi3]] ®)

AWS y =85, [xPh —n(wi p) - [xFh = xEy 1] (10)
where, for the output layer:

8in=W}n -y Yin-[1-yinl, 5§h = (dﬁh -Y?fh)')’?,h 1=y (1)
and for hidden layers:

85y =xjp-[1- x}:hlgskh ’[Wlfj,h +n(x}n) [Whn — Wein]] (12)

85n =Xjh [1- X501 ;5511 Iwgn —n(xin) [Wen —Wrp]l (13)
4. SIMULATION RESULTS

An example of simulation is briefly presented below. We apply the proposed method to
approximate realisation of non-linear mapping of fuzzy numbers. The modified multilayer
architecture is used, with 6 inputs, 3 neurons in the hidden layer and 4 neurones in the output layer

(Fig. 4).

Fig. 4. The modified AFNN architecture

The dotted lines represent the missing connections (weight zeroes), the bulk lines the prescribed
fuzzy weights, and the others lines represents normal fuzzy weights which must be adapted. The
TFN from input space have the bases inside the interval [-1, 1] and are mapping to TFN which have
the bases in [0,+1]. The learning starts with 300 iterations for adaptation of central values (C) of
fuzzy weights. The learning factor, denoted by A, is chosen 0.5. The input vector of TFN is shown in
Fig. 5. The evolution of the output vector of TFN after 301 and 600 iterations are shown in Figures
6-7. After about 600 iterations, the error (square root of error term E) is generally lower than 102,

The standard architecture of AFNN can be modified with imposed restrictions: some weights
are fixed, some connections between neurons are missing, and some inputs are connected directly to

86

output layer. The experimental results showed the capability of AFNN and proposed algorithm to
mapping, with a good performance, a VFN into another VFN. Two weights with c-cut at h=0.8 and
h=0.4 are represented in Fig. 8. The learning time in this cases is greater than in classic architecture,
because of restrictions (Fig. 9). The dotted line represent the error term evolution with prescribed
weights, an the normal line the error term evolution with all connection.

Fig. 5: The input in AFNN for TFN.

E= 0.103827 itar = 301

0.70 0.7911

000 e,

0.1403 ' ' 0.35 0.6065 ' ' 0.44 ‘8611
0.80 0.8000 0.1501 0.62 0.6200 0.5? 5200
0.90 0.8076 . 0.1613 0.92 0.6337 0.73 .5786
Fig. 6: The output of AFNN after 301 AG iterations for TFN.
E = 0.000003 itear = 600
0.70 0. 7000 0.10 0.1001 0.39 0.3500 0.44 0. 4400
0.80 0.8000 0.15 0.1501 0.62 0.6200 0.57 0.5700
0.9%0 0.8998 0.25 0.2500 0.92 0.9175 0.73 0.7300
Fig. 7: The output of AFNN after 600 AG iterations, for TFN (L and R values)
k=13 =3 1=2 k=2 jJ=2 1=3
ist cut 0.2004 0.2018 0.2021 ist cut 0.0749 0.0819 0.0821
2 cut 0.1949 0.2018 0.2022 2 cut 0.0727 0.0819 0.0849
base 0.1927? 0.2018 0.2049 base 0.0721 0.0819 0.0889

Fig. 8. The weights wa,' and w.s* with h=0.8 and h=0.4, after 600 AG iterations.

87

L)
60 120 180 240

iterations

Fig. 9. The error term evolution depending for full connected AFNN and
for AFN with prescribed weights.

5. CONCLUSIONS

The presented AFNN is able to deal with asymmetric triangular and trapezoidal fuzzy
numbers, in contrast to the AFNN in [1-2], that uses only symmetric TFN. The TE algorithm is
simpler than the one proposed by Ishibuchi [1-2]. The approximation obtained in non-linear mapping
of TFN is as good as the apprommatlon obtained by the other algorithms reported.

The computing time, in the case AFNN, may be somewhat high. One can overcome thls
drawback by using an appropriate learning factor (A>5.0). In the proposed algorithms, the symmetric
triangular fuzzy numbers, as used in [1-2], are a particular case. The algorithms proposed here, based
on TE or AG, can be extended to any type of fuzzy numbers. The application of TE and AG with o-
cuts for TFN gave a good approximation for non-linear mapping between vectors of fuzzy numbers
of TFN. This assertion may be extended to fuzzy numbers with other shapes of membership
functions (e.g. Gauss).

Several potential applications of the above AFNN are discussed in [7].

REFERENCES

[1] Ishibuchi, H., Kwon, K., Tanaka, H. (1995), A learning algorithm on fuzzy neural networks with
triangular fuzzy weights, Fuzzy Sets and Systems, Vol. 72, No. 3, June 23, pp. 257-264,

[2] Ishibuchi, H., Fujioka, R., Tanaka, H. (1992), An Architecture of Neural Networks for Input
Vectors of Fuzzy Numbers, Proc. FUZZ-IEEE '92, San Diego, USA, pp. 643-650.

[3] Teodorescu, H.N., Arotaritei, D., Gonzales, E.P., Cuervo, G.M. (1996), Trail-and-Error
Algorithm for Algebraic Fuzzy Neural Networks using Triangular Fuzzy Numbers, Proceeding of

88

the International Conference on Intelligent Technologies in Human-Related Sciences ITHURS' 96,
Leén, Spain, pp. 81-86.

[4] Teodorescu, H.N., Arotaritei, D., Gonzales, E.L. (1996), A General Trial-and-Error Algorithm
for Algebraic Fuzzy Neural Networks Proceedings of the Fourth European Congress on Intelligent
Techniques and Soft Computing, Aachen, Germany, September 2-5, 1996, vol 1, pp. 8-12.

[5] Teodorescu, HN., Arotaritei, D., Gonzales, EL., Cuervo, AM. (1996), Adapted Gradient
Algorithm for Algebraic Fuzzy Neural Networks, Proceedings of the 15t International
Symposium/Workshop AT'96: Neuro-Fuzzy System, 29-31 August, 1996 Lausanne, Switzerland.

[6] Ksufinann, A., Aluja, J.G. (1995), Grafos neuronales para la Economia y la Gestién de
Empresas, Ediciones Pirkmiede, SA. v _
[7] Teodorescu H.N., Gonzales E.L., Cuervo, A.M., Arotaritei, D. (1996), Algebraic Neuro-Fuzzy
Systems in Economic and Management Applications, 18t International Symposium/Workshop AT'96:
Neuro-Fuzzy System, 29-31 August, Lausanne, Switzerland, (poster session).

