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Abstract

In this paper a new artificial neural network based fuzzy inference system (ANNBFIS)
has been described. The novelty of the system consists in the moving fuzzy consequent in if-then
rules. This system also automatically generates rules from numerical data. The application to

medical pattern recognition is considered in this paper as well.

1. Introduction

In literature several methods of automatic fuzzy rule generation from given numerical
data have been described [1,2,4,5,6]. The simplest method of rule generation is based on a
clustering algorithm and estimation of the proper fuzzy relations from a set of numerical data.
Kosko's fuzzy associative memory (FAM) [5] can store such fuzzy relations and process fuzzy
inference simultaneously. This approach, however, causes some difficulties because of conflicts
appearing among the generated rules.

Wang et al. [9] proposed a method for generating fuzzy rules from numerical data
without conflicting rules. However, they used too many heuristic procedures and a trial-and-error
choice of membership functions.

Another type of methods which use the learning capability of neural networks and the
fact that both fuzzy systems and neural nets are universal approximators, has been successfully
applied to various tasks. The problem here is the difficulty in understanding the identified fuzzy
rules since they are implicitly acquired into the network itself.

Mitra et al. [6] have proposed a fuzzy multilayer perceptron generating fuzzy rules from
the connection weights.

Several methods of extracting rules from the given data are based on a class of radial
basis function networks (RBFNSs). The fact that there is a functional equivalence between RBFNs
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and the fuzzy system has been used by Jang et al. [3] to construct Sugeno type of adaptive
network based fuzzy inference system (ANFIS) which is trained by the back propagation
algorithm. More general fuzzy reasoning schemes in ANFIS are employed by Horikawa et al. [2].
Such a developed radial basis function based adaptive fuzzy systems has been described by Cho
and Wang [1] and applied to system identification and prediction.

The aim of this paper is the theoretical description and structure presentation of a new
artificial neural network based fuzzy inference system ANNBFIS. The novelty of the system
consists in the introduction of the moving fuzzy consequent in if-then rules. The described system
is applied to pattern recogpition problems

The paper is organized as follows. Some introductory remarks and the main goal of the
paper are formulated in section 1. Section 2 introduces the basics of fuzzy systems. In section 3
the structure of ANNBFIS and the adaptation of the parameters are shown . Section 4. illustrates
the theoretical considerations by means of application of the system to the pattern recognition

problem. Finally, concluding remarks are gathered in section 5.

2. Fundamentals of fuzzy systems

In approximate reasoning realized in fuzzy systems the if-then fuzzy rules or fuzzy
conditional statements play an essential and up to now the most important role. Often they are also
used to capture the human ability of decision making and/or control in an uncertain and imprecise
environment. In this section we will use such fuzzy rules to recall the important approximate
reasoning methods which are basic in our further considerations.

Assume that m numbers of n-input and one-output (MISO) fuzzy implicative rules or
fuzzy conditional statements are given. The i-th rule may be written in the following forms:

R®: ifX,isA and..and X is A then Y =10 (X,,.. X,) 6))

or in pseudo-vector notation

RO ifXisAD then Y = fO(X) Q)

where:

X=[x, X, .. x,I (3)
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X,,...,X, and Y are linguistic variables which may be interpreted as inputs of fuzzy system
(X,,...,X, ) and the output of that system (Y). A,®,...,A,® are linguistic values of the linguistic
variables X,,... X, and f© is a function of the variables X, ..., X, .

A collection of the above written rules for i=1,2,...m, creates a rule base which may be activated
(fired) under the singleton inputs:

Xlis xwand...ananisx"o @)

or

Xisx, )

It can easily be noticed that such a type of reasoning, where the inferred value of i-th rule output
for crisp inputs (singletons) may be written in the form:

R, (%,0--,%, ) = O(x,0,....%, ) = R (x) = [O(x,) (6)

where: = stands for fuzzy implication represented by e.g. minimum, product etc.,

R (X, %,0) =R (%) = A O(x,,) and...and A O(x, ) = AP (x,) )

denotes the degree of activation (the firing strength) of the i-th rule with respect to minimum (A)
or product ( -) representing explicite connective (AND) of the predicates X, is A® (I=1,...,n) in
the antecedent of a rule if-then.
A crisp value of the output for Larsen's fuzzy implication (product) and aggregation (sum) can be
evaluated from the formula [1]:

Y R (100X SO s ng) D R TP ()
i=1 i=1
yo = =

DR, (g %,0) DR, (xp)
i=1

i=1

Taking into account that the function f® is of the form:
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SOt =10 = Py

where p,” is crisply defined constant in the consequent of the i-th rule.
Such a model is called a zero-order Sugeno fuzzy model.

The more general first-order Sugeno fuzzy model is of the form:

j 0} o ®
f(l)(xIO’“"an) =p0 +p1 x10+“'pn xno

where p,®, p,®,...,p.? are all constants.

In vector notation it takes the form:

f(i) (xo) =p (i)Txo

where x, denotes an extended input vector

®)

10

1)

(12)

Notice that in both models the consequent is crisp. The above recalled method is called Takagi-

Sugeno-Kang method of reasoning.

Now let us consider a more general form of MISO fuzzy rules, i.e. the rules in which the

consequent is represented by a linguistic variable Y:

RO ifX is A and...and X is A", then ¥ is B®

(13)

Membership functions of fuzzy sets B® can be represented by the parameterized functions in the

form:

BO - O (4rea®?),y)

where y© is the center of gravity (COG) location of the fuzzy set B® :

(14
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@
S0 COGED - [yBOw)ay

[BOw) ay ()

Next we will consider the constructive type of systems with Larsen's product operation as fuzzy
implication of the fuzzy rule and sum as aggregation. '
A general form of final output value can be put in the form:

Z y® - Area(B®)
i=1

Yo < - (16)
E Area(B®)

i=l

For symmetric triangle (isosceles triangle) fuzzy values we can write a formula:

n wOR (x,)
_ =l 2
m o wOR (x,)

)

i=1 2

y @)

7)

when w®is the width of the triangle base.

3. Moving consequent fuzzy set

In equation (17), the value describing the location of COG's consequent fuzzy set in if-
then rules is constant and equals y® for i-th rule. A natural extension of the above described
situation is an assumption that the location of the consequent fuzzy set is a linear combination of
all inputs for i-th rule:

yOx)=p 7 x, (18)

Hence we get the final output value in the form:
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m (')
E R (xo) (1) T
0
i=1
Yo© (19)
0 "ow (’)R (x0)

i=1 2

Additionally, we assume that A,®,... A ® have Gaussian membership functions:

52
_(-e)

»
AP =ex 2 (20)
2s?
J
where ¢, §© ; j=1,2,...,n ;i=1,2,...,m are the parameters of the membership functions.
On the basis of (7), and for explicit connective AND taken as product we get:
A (i)(xo) = jl—l[ Aj(i)(xfo) ( 21 )
Hence, on the basis of (20) we have:
m (x —cP)
R (x,) = exp —E-’o—’z (22)
1 25 j(i)

For n inputs and m rules if-then we have to establish the following unknown parameters:

- ¢, §;7=1,2,...,n; i=1,2,...,m, the parameters of membership functions of input sets,

- pj‘", j=0,1,...,n; i=1,2,...,m; the parameters determining the location of output sets,

- w®; i=1,2,...,m; the parameters of output sets.

Obviously, the number of rules if-then is unknown. Equations (19), (22) describe a radial neural
network. The unknown parameters (except the number of rules m) are estimated by means of
gradient method performing the steepest descent on a surface in the parameter space. Therefore
the so called learning set is necessary, i.e. a set of inputs for which the output values are known.
This is the set of pair (x,(k), y,(k)); k=1,2,...,N. The measure of the error of output value may be

defined for a single pair from training set:
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1
E=;(t‘,-y‘,)2 (23)

where t, - the desired (target) value of output.

The minimization of error E is made iteratively (for parameter «):

oE
(a),,,w=(a),,,d-fl-5— (24)

g -(“)oll

where 1 - learning rate.

Now we derive the negative partial derivatives of error E according to the unknown parameters:

O ) yOU) -y, w® x,-c
e? Sy T A (3)
X
i=1
OF YO0 -y, w® (-
) =y m R(x) O3 (26)
os, E w(i)R(x) 2 5;
A MY
a1 2
o
oF wz R
‘—'(,—f(‘o“yo)';‘——“—“x;o (27)
ap, w®
J - ——Z—-Ri(xo)
o
oF wz R xy)
PR — (28)
w
Po E 5 R (xy)
i=}
OE ) Y RE)
aw® 0 TV o (29)
E _2_‘Ri(x0)
i=1

The unknown parameters may be modified on the basis of (24), after the nput of one data
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collection into the system or after the input of all data collections (cummulative method).
Additionally, the following heuristic rules for changes of n parameter have been applied. If in four
sequential iterations mean square error has diminished for the whole learning set, then the learning
parameter is increased (multiplied by n;). If in four sequential iterations the error commutatively
has been increased and decreased then the learning parameter was decreased (multiplied by ny).

Another problem is the estimation of the number m of if-then rules. This task is solved
by means of commmtative generation of new if-then rules (increasing of number m) and estimation
of the parameters usin the gradient method. A new rule is generated if the condition is fulfilled for
any k:

min max A G, (B) < A,

(30)
rJ

where A, - is a constant determining the sensitivity of the method for generation of new rules. For
a new generated rule we take the following initial parameter values for Gaussian membership
function: ¢,® = x;,(k), @ = s;, where s, - is a predefined constant implied from the determining
of membership function number for a given input (mfn,):

max %, (®) - min %, ()
ok k

Soy (31)
| 1
2mfn, |2In|] —

4. Application of ANNBFIS to pattern recognition

The fuzzy system described in the previous section can be applied to pattern recognition.
If patterns from a leaming set belong to classes w, and w,then we can build a fuzzy system whose
output takes positive values for patterns from class w, and negative values for class w,. If we

denote fuzzy system as y, = FNN( x, ), we get:

>0,ifx,(Hew
¥o(k) = FNN [x, (K)] {s 0. ifxz (k)ewl (32)

During the learning process of a classifier we take ty(k) = 1 for pattern x,(k) from class w, and

t,(k) = -1 for pattern from class w,. For a bigger number of class (p > 2) we use an extension
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class-rest ( p classifiers ) or class-class ( p(p-1)/2 classifiers ) [8].

A numerical example was presented using Ripley data [7]. These data are taken on
diagnostic tests on patients with Cushing's syndrome, a hypersensitive disorder associated with
over-secretion of cortisol by the adrenal gland. These data on Fig. 1 consist of three classes of the
syndrome represented as '+ (adenoma), " (bilateral hyerplasia) and 'O' (carcinoma). The
observations are logaritm of urinary excretion rates (mg/24h) of the steroid metabolites
tetrahydrocortisone and pregnanetriol. The classes of pattern are determined histopathologically.

The learning process was evaluated for structure class-rest (3 classifiers). It is assumed
that: mfa, = mf,=4,1=0.01,n,=11,n,= 0.9, A,= 0.5. The obtained discrimination functions
after 100 iterations are presented in Fig. 1. From this figure we can infer that the created

discrimination functions separate perfectly the considered class of patterns.
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Fig. 1. Discrimination functions for Cushing’s syndrome.
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5. Conclusions

In this paper a new artificial neural network based fuzzy inference system (ANNBFIS)

has been described. Such a presented system can be used for the automative if-then rule

generation. The novelty of that system in comparison to the well known from literature is a whole

moving fuzzy consequent. A particular case of our system is Jang's ANFIS (moving consequent

considered as singleton) or Cho & Wang AFS with a constant fuzzy consequent. The gradient

method of parameter optimization for ANNBFIS has been used. A promising application of the

presented system to pattern recognition of Cushing's syndrom has been shown.
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