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On n-reverse of implicators

Michal §abo, Bratislava

Abstract. For given implicator I we can construct the binary operation 1+*:{0;1)> — [0;1] such that

I*(x,y)= max{o, min(l, n(x) -n(y) +I(n(x), n(y)))] , where n is an negator. The binary operation I* is called the

reverse of implicator I. Generally, I* cann't be an implicator. The implicator I is reversible if I* is an implicator
too. The condition of reversibility of implicators are studied.
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Preliminaries

Definition 1. The unary operator n : [0;1] > [0;1] is called negator iff
(n) a<b = n(a)=n(b)
(n2) n(0)=1,n(1)=0
The negator 1 is called involutive if n(n(a)) = a for any a €[0,1]
Definition 2. The binary operation I [0;1]% — [0;1] is called implicator if for any a,b,c e [0;1]

hold
(i1) b<c=1I(a,b) <I(a,c), I(b,a) >I(c,a) (hybrid monotonicity)
(12) (0,0)=1I(1,1)=1, I(1,0)=0 (bondary conditions)

Corollary 1. Using (i1), (i2) we have: 1=1(0,y) =1(x,1) forall x,y €[0,1]
Definition 3. The implicator I is contrapositive with respect to negator n if
I(x,y) =I((n(y),n(x)) for all x,y €[0,1]

Definition 4. The implicator I is border if I(Ly)=y forally €[0,1].

There exist many ways how to construct implicators. One of them use t-norms and
t-conorms.
Definition 5. The binary operation T : [0;1)> - [0;1] is called t-norm if for any
a,b,c e [0;1] hold

tHTA,a)=a (boundary condition)
t2)a<b = T(a,c)<T(b,c) (monotonicity)
(t3) T(a,b) =T(b,a) (commutativity)

(t4) T(T(a,b),c)) = T(a, T(b,c)) (associativity)

The binary operation S : [0;1]% - [0;1] defined by

S(x,y) = n(T(n(x),n(y)))
where T is a t-norm and n is an involutive negator, is called t-conorm dual to the t-norm T with
respect to the negator n . Evidently then S(x,y) = n(T(n(x), n(y))) . If n(x) = 1-x we shall simly
say that S is dualto T.
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Example 1. The family of Frank t-norms {TF ,$ €[0,0]} is defined by
T§ (x,y) = Tm(x,y) = min(x, y) T} (%) =Tp(x,y) =xy
To(x,y) = TL(x,y) = max(0,x +y — 1)
T§ (x,y) = logg(1+ (5™ ~1(s” =1 /(s-1)), 5> 0,5 %1

The family of Frank t-conorms is given by S_f(x,y) =1- TsF (1-x,1-y)
Let T be a t-norm S be a dual t-conorm , n be a negator then the binary operation
I(x,y) = n(T(x,n(y)) = $(n(x),y)
is implicator. If nis an involutive negator then such implicator I is so-called model implicator
i.e. contrapositive border and fullfils the exchange principle:
I(a,1(b,c)) =1(b,I(a,c))
Example 2. Let T(x,y) = Tp(X,y) = xy and n(x) = 1 - x. We obtain the Reichenbach implicator:
(xy)=1-x(1-y)=1-x-xy
Example 3. Let T(x,y) = Ti(x,y) = Max(0, x+y - 1), n(x) = 1 - x. We obtain the Lukasiewicz
implicator I (x,y) = Min(1,1-x+y)
Example 4. T(x,y) = Tm(x,y) = Min(x,y) and n(x) = 1 - x . We obtain the Kleene-Dienes
implicator Ly(x,y) = Max(1-x,y)

Now we shall show some way how to generate implicators from given ones.

The reverse of implicators

Definition 6. Let I be an implicator, n be a negator. The binary operation I;:[0,1)* —[0,1]
defined by

In(%Y) = /n(x) - n(y) + [(n(x),n(y))/
where /a/ = min(1,max(0,a)) , is called the n-reverse of implicator L.
Evidently, 13(0,0) =I5, (L) = I5(0,) = L I5(1,0) =0, I5(x,0) = n(x), I (Ly) = 1-n(y),
but I* need not be an implicator . If I;, is an implicator then we shall say that I is n-reversible.

if x=0 =] .
Example 5. Let I(x,y) = {(1) lfﬂ)ferw(_)ry , n be a continuous negator. Takey e (0,1) such

that n(y) e (0,1). Then I;(0,y)=/1-n(y)+ I(L,n(y))/ =1-n(y) #1 which contradicts (i1) .
Thus I,, isn't implicator.

Theorem 1. If n is continuous negator and I, is an implicator then I(1,y) 2 y.

Proof. If I! is an implicator then 1=1Iy (0,y) = /1-n(y)+I(1,n(y))/. It follows that
1-n(y)+I(1,n(y))2 1 or I(1,n(y)) = n(y) . The continuity of n gives the required inequality.

Let n, be another negator. Then we define Lukasiewics n;-implicator as follows:
Inl,L (X, y) = mm(l’ rl1 (X) + Y)
Theorem 2. Let n be a continuous negator. Then Ip 1, is n-reversible iff
n,(y)21-y for ally €[0,1].
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Proof. (L), =/n(x)—n(y)+min(1n, (n(x))+n(y))/

If (Inl,L)n is an implicator then 1= (Inl,L)n(x’l) = /n(x) + nl(n(x))/ .
Thus n(x)+n,(n(x))21. The continuity of n gives y +1;(y) 21 Conversly, let
y+n,(y)21.

Then (Inl L ); (y,y)=/ min(l, n, (n(y)) + n(y))/ =1 It can be easilly shown that

(Inl,L),,'_'l for y>x

and

(Inl L) x,y)=/n(x)-n(y)+1/ for y=x
’ n

Such binary operation is the implicator.

Example 6. Let n(x) =1-x, n(x)=1- V2x-x? . Then

(Inl,L): = Jy—x+min(12 -y —V1-x2)/

*
isn't implicator. E.g. (In1 ,L)n(0-5;1) =063

In the following we shall be using the negator n(x) = 1-x only. For such negator we shall
denote 1" =1 . It means

I*(x,y) =/ly-x+I(1-x,1-y)/
If 1" is the negator then we say that I is reversible.
Theorem 3. If 1 is reversible implicator then 1" is an border implicator.
Proof. I(L,y) =/y-1+I(0,l-y)/ =y.
Then Theorem 3 allows to generate border implicators from another ones.
Theorem 4. IfI is a contrapositive (with respect to n(x)=1-x) reversible negator The I is
contrapositive negator.
Proof. I'(1-y,1-x%) = /y - x+1(y,x)/ = ly - x+I(1-x,1-y)/ =I"(x,y)
Example 7. Let 1(x,y) =Ip(x,y) = min(L1-x+y) (Lukasiewics implicator) Then I" =1 .
Theorem 5. If 1>1; thenlisreversible and 1% =1
Proof If X<y then 1-x2>1-y and
I'x,y)=/y-x+I1-x1-y)/ 2/y-x+1,(1-x,1-y) =1=1,(x,y)
If x>y thenl-x <1-y and
I'(x,y)=/y-x+I1-x,1-y)/ 2 /y-x+1/ =1,(x,y)
Theorem 6. If1is a reversible implicator then I(X,y) 21, (x,y) = Max(1-x,y).
Proof. If Iisreversiblethen 1=I"(x,1)=/1-x+I(1-x,0). Thus
I1-x,002x or I(x,0)21~x. Similarly, 1 =1"(0,y) =/y +I(1,1- y)/. Therefore
IQ1-y)21-y or ILy)2y ,
The next theorem gives some necessary and sufficient condition for the reversibility of
implicators (without proof)..
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Theorem 7. Let I be an implicator. Denote

Q(x,y) = min(I(x,y),Iy (x,y)) = min(LI(x,y),1 - x+y).

Then I is reversible iff |Q(X, y) - Q(x, Z)l < Iz - y| and lQ(x, y)—-Q(z, y)| < lx - z| and
I(x,y) 2 Iy (x,y) = Max(1-x,y)

Selfreversibility

If 1=1"then the implicator I is called selfreversible. Example 6 implies that Lukasiewics
implicator Ij is selfreversibe. For given t-norm T we can define a binary operation

T*:[0,172 > [0,1] such that
T =/x+y-1+T(Q-x,1-y)/ = max(0,x +y -1+ T(1-x,1-y))

If T" is t-norm too then T is called the t-reversible t-norm. If T=T" then T is called
selfreversible. The selreversibility of t-norm T allows to generate a selfreversible implicator.
Theorem 8. Let T be a selfreversible t-norm, S is dual t-norm then the implicator

I(x,y) =1-T(x,1-y) =8(1-x,y)
is the selfreversible implicator.
Proof.
Remark. In [ ] was proved that t-norm T is selfreversible iff T is a Frank norm or a
symmetrical ordinal sum of Frank t-norm. Recall that the ordinal sum of t-norm is the t-norm
defined as follows:
Let {(ay.by).k €K} be a family of pairwise disjoint subintervals of [0,1] and {T; ,k eK}be a
family of t-norms different from Ty;. Then The ordinal sum {a,,b,, Ty} is the t-norm defined by

X—a —a .
T(x,y)=ak +(bk—ak)T( k y k ) 1fx,y E[ak,bk]

by —ay by —ay
T(x,y) = min(x,y) otherwise
The ordinal sum {a,,b,,T,} is symmetrical if for any i eK there exists jeK such that
a; +bj =1,aj+bi =1 and T =Tj
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