The Initial Objects, Terminal Objects, Equalizers and Intersections on Categories of F_R-modules. ### Zhao Jianli Department of Mathematics, Liaocheng Teachers College, Shandong, 252059, P. R. China Abstract: In this paper, we show that the category of F_R^{\wedge} —modules is a top category, we obtain that the category of F_R^{\wedge} -module has initial objects, terminal objects, equalizers and intersections. Keywords: F_R^A -module, F — homomorphism, category of F_R^A -module, initial object, terminal object, top category, equalizer, intersection. ## 1 Introduction [1],[2],[3] introduce the concepts of F_R^{Λ} —module and the category of F_R^{Λ} —modules, and discuss the properties of them. In this paper, we show that the category of F_R^{Λ} —modules is a top category, and we obtain that the category of F_R^{Λ} —module has initial objects, terminal objects, equalizers and intersections. Let X be a nonempty set, L be a complete distributive lattice (with 0 and 1), A fuzzy subset A on X is characterised by a mapping $A: X \rightarrow L$. X^L denotes the set of whole fuzzy subset of X. In this paper R is a ring with identity $1 \neq 0$ and module which involved is an unitary left R—module. **Definition**1. 1. [1] Let M be a left R—module, A a fuzzy subring of R and A(0)=1, $B_M \in M^L$, if for all $x,y \in M$, $r \in R$, we have - $1)B_{M}(x-y) \geqslant B_{M}(x) \wedge B_{M}(y),$ - $2)B_{M}(0)=1$, - $3)B_{M}(rx) \geqslant A(r) \wedge B(x)$, then B_M is called an F_R^A -submodule (or F_R^A -module). **Definition 1.2.** Let M and N be two R—modules, $f: M \longrightarrow N$ be an R—homomorphism, B_M be an F_R^A —submodule of M, $f(B_M)$ is defined by $$\tilde{f}(B_{M})(y) = \begin{cases} \sqrt{\{B_{M}(x) | x \in M, f(x) = y\}, & \text{if } f^{-1}(y) \neq \Phi, \\ 0, & \text{if } f^{-1}(y) = \Phi, \end{cases}$$ for all $y \in N$. **Definition** 1. 3. Let M and N be two left R—module, $f:M \longrightarrow N$ be an R—homomorphism, B_M and C_N be F_R^{Λ} -submodule of M and N, respectively, if $\widetilde{f}(B_M) \leq C_N$, then \widetilde{f} is called an F—homomorphism from B_M into C_N , writes $\widetilde{f}:B_M \longrightarrow C_N$. **Definition** 1. 4. The category of F_R^A -modules F_R^A -Mod is defined by: - 1)Objects are all F_R-modules, - 2) For all B_M , $C_N \in Obj$ $(F_R^A Mod)$, the set of morphisms is Hom $(B_M, C_N) = \{\widetilde{f} \mid \widetilde{f} \text{ is an arbitrary } F-\text{homomorphism from } B_M \text{ into } C_N \}$, 3) For all $\widetilde{f} \in \text{Hom}(B_M, C_N)$, $\widetilde{g} \in \text{Hom}(C_N, D_S)$, the composition of \widetilde{f} and \widetilde{g} is defined by $\widetilde{f} = \widetilde{g} = \widetilde{f}g$. Let R-Mod denotes the category of left R-modules. **Definition** 1.5. Let B_M , $C_N \in Obj(F_R^A - mod)$, if $N \subseteq M$ and $B_M(x) \geqslant C_N(x)$, for all $x \in N$, then C_N is called the subobject of the object B_M . ## 2. Initial and terminal objects and top properties of F_R^A—modules Let M be a left R-module ,A be a fuzzy subring of R, two F_R^{\wedge} -module of M are defined by $$0_{\mathbf{M}}: \mathbf{M} \longrightarrow \mathbf{L}, \qquad 0_{\mathbf{M}}(\mathbf{m}) = \begin{cases} 0, & \text{if } \mathbf{m} \neq 0, \mathbf{m} \in \mathbf{M}, \\ 1, & \text{if } \mathbf{m} = 0, \mathbf{m} \in \mathbf{M}, \end{cases}$$ $$1_{\mathbf{M}}: \mathbf{M} \longrightarrow \mathbf{L}, \qquad 1_{\mathbf{M}}(\mathbf{m}) = 1, \forall \mathbf{m} \in \mathbf{M}.$$ Consequently, the diagram (1) and diagram (2) are admissible. Hence the objects 0_M in category F_R^A —Mod is the initial objects of the category F_R^A —Mod and the objects $1_{\{0\}}$ is the terminal objects of the category F_R^A —Mod , therefore we have the following Proposition 2. 1. **Proposition** 2.1. The category F_R^A —Mod has initial objects and terminal objects. By Proposition 2.1, we have the following Proposition 2.2. **Proposition 2.** 2. The category F_R^{Λ} —Mod has zero objects. **Theorem 2.** 3. The category F_R^A —Mod is additive category, but it is not abel category. Proof. By [2], [3] and Proposition 2. 2, the category F_R^{Λ} —Mod has products, coproducts, kernels and cokernels and zero objects, hence the category F_R^{Λ} —Mod is additive category. Let $g: C_N \longrightarrow B_M$ be a subobject of B_M , if g is normal, then $C_N = f^{-1}(B_M)$. Hence for $M \neq 0$, $1: 0_M \longrightarrow 1_M$ is a subobjects of 1_M which is not a Kernel, therefore F_R^A -Mod is not an abel category. Proposition 2. 4. Let M be a left R—module, the set $\Omega_L(M) = \{B_M \mid B_M \text{ is an } F_R^A - \text{module of } M\}$ is a complete lattice under the following order relation: $$B_M \leq C_N \text{ iff } B_M(x) \leq C_M(x), \text{ for all } x \in M.$$ Proof. Let $\{B_M^i | i \in I\} \subseteq \Omega_L(M)$ $$(\bigwedge_{i \in I} B_M^i)(x) = \bigwedge_{i \in I} B_M^i(x),$$ $$\bigvee_{i \in I} B_M^i(x) = \bigwedge_{i \in I} \{C_M(x) \big| C_M \in \Omega_L(M), B_M^i \leqslant C_M, \text{ for all } i \in I\},$$ are the inf and sub of the collection $\{B_M^i | i \in I\}$, respectively. **Theorem 2.5.** The category F_R^A -Mod is a top category over R-Mod. **Proof.** The proof is similar to Theorem 3. 4 of $\lceil 4 \rceil$. ## 3 Equalizers and intersections Theorem 3. 1 The category F_R^A -Mod has equalizers. **Proof.** Let B_M , $C_N \in Obj$ $(F_R^{\Lambda}-Mod)$, and f_1 , $f_2:B_M \longrightarrow C_N$ be two morphisms in $F_R^{\Lambda}-Mod$. So we have two R-homomorphisms f_1 , $f_2:M \longrightarrow N$ in R-Mod. But the category R-Mod has equalizers and let the equalizer of f,g in R-Mod be $i_k:K \longrightarrow M$, where $$K = \{x | f_1(x) = f_2(x), x \in M\},\$$ and i_k is the inclusion map. Eviently, K is an R-submodule of M. We define an F_R^* -module of K, $D_K: K \longrightarrow L, D_K(x) = B_M(x), \forall x \in K$, since $$D_K(x) \leq B_M(i_k(x))$$, for all $x \in K$, consequently, $i_k: D_k \longrightarrow B_M$ is an F-homomorphism. By the above construction we get that the following diagram holds in F_R^A -Mod. Let there is an F-homomorphism $g: C_R^{\wedge} \longrightarrow B_M$ such that the following diagram holds in F_R^{\wedge} -Mod. $$D_{\mathbf{K}}^{\mathbf{i}} \xrightarrow{\widetilde{\mathbf{g}}} B_{\mathbf{M}} \xrightarrow{\widetilde{\mathbf{f}}_{1}} C_{\mathbf{N}}$$ $$\downarrow \qquad \qquad \downarrow \downarrow$$ So $$K' \xrightarrow{g} M \xrightarrow{f_1} N$$ $$\downarrow \downarrow \downarrow$$ $$N \xrightarrow{f_2} M \xrightarrow{g} K'$$ holds in R-Mod. Since category R-Mod has equalizers, from the universal property there exists a unique R-homomorphism $k': K' \longrightarrow K$ in R-Mod such that $i_k k' = g$. Since we have the following diagram (3) diagram(3) $$D_{K'}(x) \leqslant B_{M}(x) \leqslant B_{M}(i_{k}k(x))$$ $$= B_{M}i_{k}(k(x)) = D_{k}(x),$$ then k' is an F-homomorphism. Consequently, the following diagram holds $$D_{K}^{i} \xrightarrow{\widetilde{k}} D_{K} \xrightarrow{\widetilde{i}_{K}} B_{M}$$ $$B_{M} \xrightarrow{\widetilde{g}} D_{r}^{i}$$ Hence the pair $(D_R, \widetilde{i_k})$ is the equalizer of the pair of F—homomorphisms $\widetilde{f_1}$ and $\widetilde{f_2}$ in category F_R^A -Mod . **Theorem 3.2.** The category $F_{\mathbb{R}}^{\Lambda}$ —Mod has finite intersections. **Proof.** Let $\{B_{M_i}^i | i \in 1, 2, \dots n\}$ be the family of subobjects of the object B_M in F_R^A -Mod. Let $M' = \bigcap_{i=1}^{n} M_i$, we define fuzzy subset $B'_{M'}$ of M', $$B'_{M'} \cdot M' \longrightarrow I$$ such that $$B_{M}^{\iota}(x) = \bigwedge \{B_{M_{\iota}}^{\iota}(x) | i=1,\dots,n\}, \text{for all } x \in M^{\iota},$$ it is easy to prove $B'_{M} \in Obj(F^{A}_{R}-Mod)$. For all $i, g_i: M_i \longrightarrow M$ are inclusion map, because $$B_{M_i}^i(x) \leq B_M(x)(f_i(x))$$, for any $x \in M_i$, $i=1,\dots,n$ so for all $i=1,2,\dots,g_i:B_{M_i}^i\longrightarrow B_M$ are F—homomorphism, let $f:D_H\longrightarrow B_M$ be an F—homomorphism which is foctored through each subobject $B_{M_i}^i$, that is, for all $i\in I$, the following diagram holds. $$D_{H} \xrightarrow{\widetilde{f}_{i}} B_{M_{i}}^{i} \xrightarrow{\widetilde{g}_{i}} B_{M}$$ $$\vdots$$ $$B_{M} \xleftarrow{\widetilde{f}} D_{H}$$ Hence $$H \xrightarrow{f_1} M_1 \xrightarrow{g_2} M$$ $$\downarrow \downarrow \downarrow$$ $$M \xrightarrow{f} H$$ holds, for $i=1,2,\cdots n$. By the universal properties of intersection, there exists R—homomorphism $f^!:H\longrightarrow M^!$ in R—Mod such that $$H \xrightarrow{f'} M' \xrightarrow{g'} M$$ $$\downarrow \downarrow \downarrow$$ $$M \xleftarrow{f} H$$ holds in R-Mod. Consider the following diagram (4) For all $x \in M$, we have $$\begin{array}{lll} D_{H}(x) \leqslant & B^{i}_{M_{i}}(f_{i}(x)) & \forall & i = 1, 2, \cdots, n, \\ & g^{i}_{i}f^{i} = f_{i}, g_{i}g^{i}_{i} = g^{i} & \forall & i = 1, 2, \cdots n, \end{array}$$ and $B'_{M'}(x) = \bigwedge \{B'_{M_i}(x) | i=1,2,\cdots,n\}$. Then $D_H(x) \leq B'_{M'}(f'(x))$, for all $x \in H$, so $\widetilde{f'}: D_H \longrightarrow B'_{M'}$ is an F-homomorphism and $$D_{H} \xrightarrow{\widetilde{f}^{i}} B^{l}_{M} \xrightarrow{\widetilde{g}^{i}} B_{M}$$ $$B_{M} \xleftarrow{\widetilde{f}} D_{H}$$ holds in F_R^{Λ} -Mod. Therefore suboject $B_{M'}^{I}$ together with the family of F-homomorphisms $$\{\widetilde{g}_{i} = B_{M}^{i} \longrightarrow B_{M_{i}}^{i} | i = 1, 2, \dots, n\}$$ is the intersection of the family of subobjects $\{B_{M_i}^i | i\!=\!1\,,\cdots,n\}$ in $F_R^A\text{-Mod.}$ #### Reference - [1] Zhao Jianli, Shi Kaiquan, Yu Mingshan, Fuzzy Modules over Fuzzy Rings, The J. Fuzzy Math, 3(1993), 531-539. - [2] Zhao Jianli, F_R^A -modules and F_R^A -modules Categories The J. Fuzzy Math(to appear). - [3] Zhao Jianli, Fuzzy homological theroy in F_R^{Λ} -modules (I), The J. Fuzzy Math (to appear). ## The Initial. Terminal Objects, Equaizer and Intersection on categories of Fa—module - [4]S. R. LOPEZ—PERMOUTH and D. S. MALIK, On Categories of Fuzzy Modules, Inform Sci, (52)1990, 211—220. - [5]S. M. A. Zaidi and Q. A. Ansari, Some results On categories of L-fuzzy subgroups of L-fuzzy subgroups, Fuzzy sets and systems 64(1994)249-256. - [6]T. S. Blyth, Categories (Longman, London, 1987). - [7]B. Mitchell, Theory of Categories (Academic Press, New York, 1965).