11

$(\in',\in'\lor q')$ -fuzzy subgroups

Yin Guo-min Zhang Cheng

Department of Mathematics, Dalian University, Dalian 116622, P. R. China

Abstract: In this paper, we give two kinds of neighborhoods of a fuzzy point and a fuzzy set and give definition of $(\in',\in'\vee q')$ -fuzzy subgroups of a group based on the new neighborhoods which is different from (α,β) -fuzzy subgroups of S. K. Bhakat and P. Das.

Keywords: Fuzzy sets, fuzzy points, fuzzy subgroups.

Concept of fuzzy subgroups is introducted by A. Rosenfeld in 1971^[4]. In 1979, J. M. Anthong and H. Sherwood redefined fuzzy subgroups by the use of t-norws^[1]. In [2], S. K. Bhakt and P. Das gave definition of (α, β) -fuzzy subgroup and made some discussions for $(\in, \in Vq)$ -fuzzy subgroups, and obtained conclusion that A is a $(\in, \in Vq)$ -fuzzy subgroup of group if and only if $A_{\lambda} = \{x \mid x \in G \text{ and } A(x) \geqslant \lambda\}$ is a subgroup of group G for any $\lambda \in [0,0.5]^{[3]}$.

In this paper, we give new neighborhoods of fuzzy point x_{λ} and fuzzy set A as following:

$$(i)x_{\lambda} \in A \Leftrightarrow A(x) \leq \lambda$$
 $(ii)x_{\lambda}q'A \Leftrightarrow \lambda + A(x) < 1$

(iii) $x_{\lambda} (\in ' \vee q') A \Leftrightarrow x_{\lambda} \in ' A \text{ or } x_{\lambda} q' A.$

Based on the neighborhoods \in ' and q', we are able to give new definition of fuzzy subgroup of a group G as following:

Definition 1. Let G be a group and A be a fuzzy subset of G. If

(i)
$$x_t \in A$$
, $y_r \in A \Rightarrow (xy)_{\max\{t,r\}} \in V(q')A$, for any $x,y \in G$, $t,r \in [0,1]$.

(ii)
$$x_i \in A \Rightarrow (x^{-1})_i \in V \neq A$$
, for any $x \in G, t \in [0,1]$.

then A is called as a $(\in', \in' \lor q')$ -fuzzy subgroup of group G.

Theorem 1. A is a $(\in', \in' \lor q')$ -fuzzy subgroup of group G if and only if (1) $A(xy) \le \max\{A(x), A(y), 0.5\}$ (2) $A(x^{-1}) \le \max\{A(x), 0.5\}$.

Proof: Let A is a $(\in', \in' \lor q')$ -fuzzy subgroup of group G.

(1) If there are $x, y \in G$ such that $A(xy) > \max\{A(x), A(y), 0.5\}$ then there is $t \in [0,1]$ such that $A(xy) > t > \max\{A(x), A(y), 0.5\}$ it follows that $x_t \in A, y_t \in A$ and t > 0.5. Since A is a $(\in', \in' \lor q')$ -fuzzy subgroup of group G, so $(xy)_t (\in' \lor q')A$, but A(xy) > t and t + A(xy) > 2t > 1 and consequently this is a contradiction. Hence $A(xy) \le \max\{A(x), A(y), 0.5\}$ for any $x, y \in G$. (2) is clear.

On the other hand, let (1) and (2) of theorem 1 holds, let $x,y \in G$ and $t,r \in [0,1]$ such that $x_i \in A, y_r \in A$, then

$$A(xy) \leq \max\{A(x), A(y), 0.5\} \leq \max\{t, r, 0.5\}.$$

If $\max\{t,r\} < 0.5$, then $A(xy) \le 0.5$ and consequently $A(xy) + \max\{t,r\} < 1$, i. e., $(xy)_{\max\{t,r\}} = q'A$.

If $\max\{t,r\} \ge 0.5$, then $A(xy) \le \max\{t,r\}$, i. e., $(xy)_{\max\{t,r\}} \in A$.

Hence $(xy)_{\max\{t,r\}} (\in ' \lor q') A$, i. e, (i) of definition 1 holds.

(ii) is clear.

Corollary. A is a $(\in',\in'\vee q')$ -fuzzy subgroup of group G if and only if $A(xy^{-1}) \leq \max\{A(x), A(y), 0, 5\}$ for any $x, y \in G$.

Theorem 2. A is a $(\in', \in' \lor q')$ -fuzzy subgroup of group G if and only if $A' = \{x \mid x \in G \text{ and } A \in (x) \le t \mid x \in G \text{ is a subgroup of } G \text{ for any } t \in [0, 5, 1].$

Proof: Let A be a $(\in', \in' \lor q')$ -fuzzy subgroup of group G.For $t \in [0.5,1]$ and $x,y \in A'$, We have

$$A(xy^{-1}) \le \max\{A(x), A(y), 0.5\} \le \max\{t, 0.5\} = t$$

and consequently $xy^{-1} \in A^t$, i. e., A^t is a subgroup of group G.

On the other hand, let A' is a subgroup of group G for any $t \in [0, 5, 1]$. Assume that there are $x_o, y_o \in G$ such that

$$A(x_0y_0^{-1}) > \max\{A(x_0), A(y_0), 0.5\},$$

then there is a $t \in [0,1]$ suh that

$$A(x_0y_0^{-1})>t>\max\{A(x_0),A(y_0),0.5\},$$

it follows that $t > A(x_o)$, $t > A(y_o)$ and t > 0.5, and consequently $x_o \in A'$, $y_o \in A'$, they $x_o y_o^{-1} \in A'$ and $A(x_o y_o^{-1}) \le t$. This is a contradiction. Hence $A(xy^{-1}) \le \max\{A(x), A(y), 0.5\}$ for any $x, y \in G$, i. e., A is a $(\in ', \in ' \lor q')$ -fuzzy subgroups of group G.

Definition 2. Let A be a $(\in', \in' \lor q')$ -fuzzy subgroup of group G. If A satisfies:

 $x_i \in {}'A \Rightarrow (y^{-1}xy)_i (\in {}' \lor q')A$ for any $x,y \in G$ and $t \in [0,1]$, then A is called as normal $(\in {}',\in {}' \lor q')$ -fuzzy subgroup of group G.

Theorem 3. Let A be a $(\in', \in' \lor q')$ -fuzzy subgroup of group G, then A is a normal $(\in', \in' \lor q')$ -fuzzy subgroup of G if and only if $A(y^{-1}xy) \leq \max\{A(x), 0.5\}$.

Theorem 4. A is a normal $(\in', \in' \lor q')$ -fuzzy subgroup of G if and only if $A' = \{x \mid x \in G, A (x) \le t\}$ is a normal subgroup of G for any $t \in [0, 5, 1]$.

References

- 1. J. M. Anthony and M. Sherwood. Fuzzy groups redefined. J. Math. and Appl. ,69(1979) $124 \sim 130$
- 2. S. K. Bhakat and P. Das. On the definition of a fuzzy subgroup. Fuzzy sets and systems, 51(1992) 235~241.
- 3. S. K. Bhakat and P. Das. (\in , \in V q)-fuzzy subgroup. Fuzzy sets and systems, 80(1996) 359 \sim 368
- 4. A. Rosenfeld. Fuzzy groups, J. Math. Anal. Appl., 35(1971) 512~517.