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Abstrac. This paper is a continuous work of [8], the concept of fuzzy-valued fuzzy measures on
fuzzy sets is introduced at first, then basing on the generalized fuzzy integral on fuzzy sets given by
Wul*], the generalized fuzzy integral of fuzzy-valued functions with respect to flizzy—valued fuzzy
measures on fuzzy sets is defined, the properties and convergence theorems are shown. All these are
the extension of [8].
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1. Introduction

Since Sugeno!*! introduce the concepts of fuzzy measures and fuzzy integrals, the theory has been
made much deeper by Ralescu and Adams!%), and many others. Especially, the generalized fuzzy
integral on fuzzy sets introduced by Wul®) is a much wider one, and it keeps all the results
corresponding Sugeno’s. In ref. [8], we have established the theory of generalized fuzzy integrals of
fuzzy-valued functions, it is a good extension of generalized fuzzy integrals of point-valued functions.
This paper is in a futher way to generalize it, we will build up the theory of generalized fuzzy
integrals of fuzzy-valued functions with respect to fuzzy-valued fuzzy measures on fuzzy sets.

In the remaider of this paper, R* denotes the interval [0, + ], I(R*) denotes the interval
number set on R*, R* denotes the fuzzy number set on R*. X is an arbitrary fixed set, o is fuzzy
a o-algebra formed by the fuzzy subsets of X, (X, &) is the measurable space. Let F(X) denotes the
set of all &-measurable fuzzy-valued functions from X to R*, and M(X) denotes the set of all fuzzy
measures from & to R* . Other notations and concepts which are not mentioned, can be found in
[5,6,7,8].

2. Fuzzy-valued measures on fuzzy sets

Definition 2.1. A mapping p (resp. p): #—I(R*) (resp. R*) is said to be an interval-valued
(resp. fuzzy-valued) fuzzy measure if it satisfies the following conditions:
1, r=0

(i) p(®) =0 (resp. p(®)=0), where O(r) = 0 -0
, r#F0.
(ii) ACB implies x(A)<u(B)(resp. p(A)<p(B));
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(iii) An 4 A implies i(An) 4 5(A) (resp. 3(An)~+a(R));

(iv) An ¥ A and there exists a n,, s.t. p(Ang) < (resp. p(Ang) <), implies p(An) ¥ p(A)
(resp. #(A)~5(A)).

Remark: “*,i” can be found in [6].

In the following, we use M(X) (resp. M(X)) to denote the set of all interval-valued (resp. fuzzy-
valued) fuzzy measures. The relationship of fuzzy measures, interval-valued fuzzy measures and
fuzzy-valued fuzzy measures are shown as: :

Lemma 2.1. p€M(X) iff ™, p* € M(X), where ¢~ (A) =infu(A), p* (A) =supp(A).
Lemma 2.2. If € M(X), then g, € M(X) for every A€ (0, 1]. Where gy (A) = (a(A)),, and iy
D proli-e. ma(A)Dppn(A) for all AE ) holds for 0K, <A, <1.

3. Generalized fuzzy integrals of fuzzy-valued functions with respect to fuzzy-valued fuzzy
measures on fuzzy sets.

Definition 3.1. Let f be a sf-measurable interval-valued function, A€, and p€ M(X). Then the
(G) fuzzy integral of f over A with respect to y is defined as,

[afde=[ faf~dp™, Jzf'du*].

Definition 3.2. Let f€ F(X), AE.;land;tEIVI(X). Then the (G) fuzzy integral of f over A with
respect g is defined as

(] afdp)(r) =Sup{a€(0, 1]: r€ | zhdm}

Theorem 3.1. Let f€EF(X), p€M(X) and p(A)< 0. Thenfz?d;: € R*, and

( | afdp)y= | zhdm, (AE(0, 1]) (4.1)

Theorem 3.2. (G) fuzzy integrals of fuzzy-valued functions with respect to fuzzy-valued fuzzy
measures on fuzzy sets have following properties:

(0) <y implies [ Fude < | Fodit

() & © B implies | 74 < [ 7d

(i) iy <oy iruplies | oty < [ i

1, r=0,

0, r#0.

(v) _[A;d; = S(r, p(A)), where r€ER* and we define S(r,p) =[S(r~, p~), S(r*, p*)], [S

(iv) ;;(K) =0 impliaj-x?d/: = O, where O(r) =
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(l‘, P)]x S(I‘A:Px)’ fOl‘ GI(R+), ;, 56§+.
(vi) L(r V fde = Izrdp Vv Iz;‘d; , where rf€R*.
Theorem 3.3. Let {f., (n=1), ICF(X), {p.(a=1), g CM(X). B, 4|, 5,4 . and p(A) < oo,
Theorem 3.4. Let {f,(n > 1), f} CF(X), {pa(n=1), plCM(X). T, ¥ f, 2o ¥ 1, and there
exists a ng, s.t. ﬁn.(}i)< + 00, thenj:?.d/-z. *Jl;d;.z
Corollary 3.1. Let {f,(n=>1), {ICF(X), p€M(X), and p(A)<coo. K, 4 forf, ¥ I, then
J = [ i
Corollary 3.2. Let IEF(X), {pn(n>1), ulC M(X).
() If pod p, and p(A)< + oo, thmj'x?d;, 4 Izid; ;
(i) If po ¥ p, and there exists a ng, s.t. ;%(K) < + oo, theandfz. v Jlx?d; .
Theorem 3.5. Let (LI CF(X), 1l CM(X). I { Apa(a>1), V au(n=>1), liminf &, limsup
padl CM(X), and p,(A) < + 00(n=>1), then
(i) I (ltmmff,,)d(lmunfp,,) lzm inf j_f,dp,,,
(if) Limsup j Fodp < j (limsupf,) d( limsupp,) -
Corollary 3.3. Let {[,] CF(X), p€M(A), andp(A)<°° Then
(1)‘[ (liminff,)d p < liminf J'xf,.p

(ii) limsupJ’ Zf' dp < IK( limsupf,)dy .

Concluding remark.

Up to here, we have built up a theory of generalized fuzzy integrals on fuzzy sets, it is the most
general one as far as we know. The theory is based on fuzzy numbers in[2], of course, we can
establish the similar theory based on other concepts of fuzzy numbers. That will be given in a

subsquent paper.
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