FURTHER DISCUSSIONS ON GENERALIZED FUZZY INTEGRALS ON FUZZY SETS(I): Fuzzy-valued fuzzy measures and generalized fuzzy integrals on fuzzy sets

Deli Zhang^a, Bokan Zhang^b, Caimei Guo^c

- ⁴ Dept. of Math. Jilin Prov. Inst. of Education, Changehun, 130022, P.R. China
- b Dept. of Math. Harbin Inst. of Tech. Harbin, 150001, P.R. China
- Dept. of Basic Science, Changchun Univ. Changchun, 130022, P.R. China

Abstrac. This paper is a continuous work of [8], the concept of fuzzy-valued fuzzy measures on fuzzy sets is introduced at first, then basing on the generalized fuzzy integral on fuzzy sets given by Wu^[5], the generalized fuzzy integral of fuzzy-valued functions with respect to fuzzy-valued fuzzy measures on fuzzy sets is defined, the properties and convergence theorems are shown. All these are the extension of [8].

Keywords. Fuzzy measure on fuzzy sets, generalized fuzzy integral on fuzzy sets, fuzzy-valued function, fuzzy-valued fuzzy measure on fuzzy sets.

1. Introduction

Since Sugeno^[4] introduce the concepts of fuzzy measures and fuzzy integrals, the theory has been made much deeper by Ralescu and Adams^[5], and many others. Especially, the generalized fuzzy integral on fuzzy sets introduced by Wu^[5] is a much wider one, and it keeps all the results corresponding Sugeno's. In ref. [8], we have established the theory of generalized fuzzy integrals of fuzzy-valued functions, it is a good extension of generalized fuzzy integrals of point-valued functions. This paper is in a futher way to generalize it, we will build up the theory of generalized fuzzy integrals of fuzzy-valued functions with respect to fuzzy-valued fuzzy measures on fuzzy sets. In the remaider of this paper, R⁺ denotes the interval $[0, +\infty]$, $I(R^+)$ denotes the interval number set on R⁺, \tilde{R}^+ denotes the fuzzy number set on R⁺. X is an arbitrary fixed set, \tilde{A} is fuzzy a σ -algebra formed by the fuzzy subsets of X, (X, \tilde{A}) is the measurable space. Let $\tilde{F}(X)$ denotes the set of all \tilde{A} -measurable fuzzy-valued functions from X to \tilde{R}^+ , and $\tilde{M}(X)$ denotes the set of all fuzzy measures from \tilde{A} to \tilde{R}^+ . Other notations and concepts which are not mentioned, can be found in [5,6,7,8].

2. Fuzzy-valued measures on fuzzy sets

Definition 2.1. A mapping $\bar{\mu}$ (resp. $\tilde{\mu}$): $\tilde{\mathscr{A}} \rightarrow I(R^+)$ (resp. \tilde{R}^+) is said to be an interval-valued (resp. fuzzy-valued) fuzzy measure if it satisfies the following conditions:

(i)
$$\bar{\mu}(\Phi) = 0$$
 (resp. $\tilde{\mu}(\Phi) = \tilde{O}$), where $\tilde{O}(r) = \begin{cases} 1, & r = 0 \\ 0, & r \neq 0 \end{cases}$;

(ii) $\widetilde{A} \subseteq \widetilde{B}$ implies $\overline{\mu}(\widetilde{A}) \leq \overline{\mu}(\widetilde{B})$ (resp. $\widetilde{\mu}(\widetilde{A}) \leq \widetilde{\mu}(\widetilde{B})$);

(iii) $\widetilde{A}n \uparrow \widetilde{A}$ implies $\overline{\mu}(\widetilde{A}n) \uparrow \overline{\mu}(\widetilde{A})$ (resp. $\widetilde{\mu}(\widetilde{A}n) \xrightarrow{s} \widetilde{\mu}(\widetilde{A})$);

(iv) $\widetilde{A}n \downarrow \widetilde{A}$ and there exists a n_0 , s.t. $\overline{\mu}(\widetilde{A}n_0) < \infty$ (resp. $\widetilde{\mu}(\widetilde{A}n_0) < \infty$), implies $\overline{\mu}(\widetilde{A}n) \downarrow \overline{\mu}(\widetilde{A})$ (resp. $\widetilde{\mu}(\widetilde{A}_n) \xrightarrow{s} \widetilde{\mu}(A)$).

Remark: "→, →" can be found in [6].

In the following, we use $\overline{M}(X)$ (resp. $\widetilde{M}(X)$) to denote the set of all interval-valued (resp. fuzzy-valued) fuzzy measures. The relationship of fuzzy measures, interval-valued fuzzy measures and fuzzy-valued fuzzy measures are shown as:

Lemma 2.1. $\overline{\mu} \in \overline{M}(X)$ iff μ^- , $\mu^+ \in M(X)$, where $\mu^-(A) = \inf_{\overline{\mu}}(A)$, $\mu^+(A) = \sup_{\overline{\mu}}(A)$.

Lemma 2.2. If $\tilde{\mu} \in \widetilde{M}(X)$, then $\tilde{\mu}_{\lambda} \in \widetilde{M}(X)$ for every $\lambda \in (0, 1]$. Where $\tilde{\mu}_{\lambda}(\widetilde{A}) = (\tilde{\mu}(\widetilde{A}))_{\lambda}$, and $\tilde{\mu}_{\lambda 1} = \tilde{\mu}_{\lambda 2}(i.e. \tilde{\mu}_{\lambda 1}(\widetilde{A})) = \tilde{\mu}_{\lambda 2}(\widetilde{A})$ for all $\widetilde{A} \in \widetilde{A}$) holds for $0 \le \lambda_1 \le \lambda_2 \le 1$.

3. Generalized fuzzy integrals of fuzzy-valued functions with respect to fuzzy-valued fuzzy measures on fuzzy sets.

Definition 3.1. Let \bar{f} be a \bar{A} -measurable interval-valued function, $\bar{A} \in \bar{A}$, and $\bar{\mu} \in \bar{M}(X)$. Then the (G) fuzzy integral of \bar{f} over \bar{A} with respect to $\bar{\mu}$ is defined as,

$$\int_{\widetilde{A}} \overline{f} d\overline{\mu} = \left[\int_{\widetilde{A}} f^{-} d\mu^{-}, \int_{\widetilde{A}} f^{+} d\mu^{+} \right].$$

Definition 3.2. Let $\tilde{f} \in \tilde{F}(X)$, $\tilde{A} \in \mathcal{A}$ and $\tilde{\mu} \in \tilde{M}(X)$. Then the (G) fuzzy integral of \tilde{f} over \tilde{A} with respect $\tilde{\mu}$ is defined as

$$(\int_{\tilde{A}} \tilde{f} d\tilde{\mu})(r) = \sup \{\lambda \in (0, 1]: r \in \int_{\tilde{A}} \tilde{f}_{\lambda} d\tilde{\mu}_{\lambda} \}$$

Theorem 3.1. Let $\tilde{f} \in \tilde{F}(X)$, $\tilde{\mu} \in \tilde{M}(X)$ and $\tilde{\mu}(\tilde{A}) < \infty$. Then $\int_{\tilde{A}} \tilde{f} d\tilde{\mu} \in \tilde{R}^+$, and

$$(\int_{\tilde{A}}\tilde{f}d\tilde{\mu})_{\lambda} = \int_{\tilde{A}}\tilde{f}_{\lambda}d\tilde{\mu}_{\lambda}, (\lambda \in (0, 1])$$

$$(4.1)$$

Theorem 3.2. (G) fuzzy integrals of fuzzy-valued functions with respect to fuzzy-valued fuzzy measures on fuzzy sets have following properties:

(i)
$$\tilde{\mathbf{f}}_1{\leqslant}\tilde{\mathbf{f}}_2$$
 implies $\int_{\tilde{A}}\!\!\tilde{f}_1d\tilde{\mu}\leqslant\int_{\tilde{A}}\!\!\tilde{f}_2d\tilde{\mu}$,

(ii)
$$\tilde{A} \subset \tilde{B}$$
 implies $\int_{\tilde{A}} \tilde{f} d\tilde{\mu} \leqslant \int_{\tilde{B}} \tilde{f} d\tilde{\mu}$

(iii)
$$\tilde{\mu}_1 \leqslant \tilde{\mu}_2$$
 implies $\int_{\tilde{A}} \tilde{f} d\tilde{\mu}_1 \leqslant \int_{\tilde{A}} \tilde{f} d\tilde{\mu}_2$,

(iv)
$$\tilde{\mu}(\tilde{A}) = \tilde{O}$$
 implies $\int_{\tilde{A}} \tilde{f} d\tilde{\mu} = \tilde{O}$, where $\tilde{O}(r) = \begin{cases} 1, & r = 0, \\ 0, & r \neq 0. \end{cases}$

(v)
$$\int_{A} \tilde{r} d\tilde{\mu} = S(\tilde{r}, \tilde{\mu}(\tilde{A}))$$
, where $\tilde{r} \in \tilde{R}^{+}$ and we define $S(\tilde{r}, \tilde{p}) = [S(r^{-}, p^{-}), S(r^{+}, p^{+})]$, [S

$$(\tilde{r}, \tilde{p})]_{\lambda} = S(\tilde{r}_{\lambda}, \tilde{p}_{\lambda}), \text{ for } \tilde{r}, \tilde{p} \in I(R^{+}), \tilde{r}, \tilde{p} \in \tilde{R}^{+}.$$

(vi)
$$\int_{\tilde{A}} (\tilde{r} \vee \tilde{f}) d\tilde{\mu} = \int_{\tilde{A}} \tilde{r} d\tilde{\mu} \vee \int_{\tilde{A}} \tilde{f} d\tilde{\mu}$$
, where $\tilde{r} \in \tilde{R}^+$.

Theorem 3.3. Let $\{\tilde{f}_n, (n \ge 1), \tilde{f}\} \subset \widetilde{F}(X), \{\tilde{\mu}_n(n \ge 1), \tilde{\mu}\} \subset \widetilde{M}(X)$. If $\tilde{f}_n \uparrow \tilde{f}, \tilde{\mu}_n \uparrow \tilde{\mu}$, and $\tilde{\mu}(\tilde{A}) < \infty$, then $\int_{\widetilde{A}} \tilde{f}_n d\tilde{\mu}_n \uparrow \int_{\widetilde{A}} \tilde{f} d\tilde{\mu}$

Theorem 3.4. Let $\{\tilde{f}_n(n \ge 1), \tilde{f}\} \subset \widetilde{F}(X), \{\tilde{\mu}_n(n \ge 1), \tilde{\mu}\} \subset \widetilde{M}(X)$. If $\tilde{f}_n \downarrow \tilde{f}, \tilde{\mu}_n \downarrow \tilde{\mu}$, and there exists a n_0 , s.t. $\tilde{\mu}_{n_0}(\tilde{A}) < +\infty$, then $\int_{\tilde{A}} \tilde{f}_n d\tilde{\mu}_n \downarrow \int_{\tilde{A}} \tilde{f} d\tilde{\mu}$

Corollary 3.1. Let $\{\tilde{f}_n(n \ge 1), \tilde{f}\} \subset \widetilde{F}(X), \tilde{\mu} \in \widetilde{M}(X), \text{ and } \tilde{\mu}(\widetilde{A}) < \infty$. If $\tilde{f}_n \nmid \tilde{f}$ or $\tilde{f}_n \nmid \tilde{f}$, then $\int_{\widetilde{A}} \tilde{f}_n d\tilde{\mu} \to \int_{\widetilde{A}} \tilde{f}_n d\tilde{\mu}.$

Corollary 3.2. Let $\tilde{f} \in \tilde{F}(X)$, $|\tilde{\mu}_n(n \ge 1)$, $\tilde{\mu}| \subset \widetilde{M}(X)$.

(i) If
$$\tilde{\mu}_n \uparrow \tilde{\mu}$$
, and $\tilde{\mu}(\tilde{A}) < +\infty$, then $\int_{\tilde{A}} \tilde{f} d\tilde{\mu}_n \uparrow \int_{\tilde{A}} \tilde{f} d\tilde{\mu}_i$;

(ii) If
$$\tilde{\mu}_n \neq \tilde{\mu}$$
, and there exists a n_0 , s.t. $\tilde{\mu}_{n_0}(\tilde{A}) < +\infty$, then $\int_{\tilde{A}} \tilde{f} d\tilde{\mu}_n \neq \int_{\tilde{A}} \tilde{f} d\tilde{\mu}$.

Theorem 3.5. Let $\{\tilde{f}_n\}\subset \widetilde{F}(X)$, $\{\tilde{\mu}_n\}\subset \widetilde{M}(X)$. If $\{\bigwedge_{k=n}^{n}\widetilde{\mu}_n(n\geq 1),\bigvee_{k=n}^{n}\widetilde{\mu}_n(n\geq 1),\bigvee_{k=n}^{n}\widetilde{$

(i)
$$\int_{\widetilde{A}} (\liminf \widetilde{f}_n) d(\liminf \widetilde{\mu}_n) \leqslant \liminf_{n \to \infty} \int_{\widetilde{A}} \widetilde{f}_n d\widetilde{\mu}_n$$
,

(ii) limsup
$$\int_{\widetilde{A}} \tilde{f}_n d\tilde{\mu}_n \leqslant \int_{\widetilde{A}} (limsup\tilde{f}_n) d(limsup\tilde{\mu}_n)$$
.

Corollary 3.3. Let $\{\tilde{f}_n\}\subset \widetilde{F}(X), \ \tilde{\mu}\in \widetilde{M}(\widetilde{A}), \ \text{and} \ \tilde{\mu}(\widetilde{A})<\infty$. Then

(i)
$$\int_{\tilde{A}} (limin\tilde{f}_n) d\tilde{\mu} \leqslant liminf \int_{\tilde{A}} \tilde{f}_n \tilde{\mu}$$

(ii)
$$\limsup_{\tilde{A}} \int_{\tilde{A}} \tilde{f}_n d\tilde{\mu} \leqslant \int_{\tilde{A}} (\limsup_{\tilde{f}_n} \tilde{f}_n) d\tilde{\mu}$$
.

Concluding remark.

Up to here, we have built up a theory of generalized fuzzy integrals on fuzzy sets, it is the most general one as far as we know. The theory is based on fuzzy numbers in [2], of course, we can establish the similar theory based on other concepts of fuzzy numbers. That will be given in a subsquent paper.

References

- 1. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl., 12(1965) 1-12
- 2. D. Dubois and H. Prade, Fuzzy Sets and Systems Theory and Applications (Academic Press, New York, 1980).
- 3. D. Ralescu and G. Adams, The fuzzy integral, J. Math. Anal. Appl., 75(1980) 562-570.
- 4. M. Sugeno, Theory of fuzzy integrals and its applications, Ph. D. Dissertation, Tokyo Institute

- of Tehndogy (1974).
- 5. C. Wu, S. Wang and M. Ma, Generalized fuzzy integrals on fuzzy sets. Proc. of First Asian Symp. On Fuzzy Sets and Systems, Singapore, 1990.
- 6. D. Zhang and Z. Wang, Fuzzy integrals of fuzzy-valued functions, Fuzzy Sets and Systems, 54 (1993) 63-67.
- 7. D. Zhang and Z. Wang, Fuzzy number measures and integrals, Fuzzy Systems and Math., 7 (1993) 71 80 (in Chinese).
- 8. D. Zhang and C. Cuo, Further discussions on generalized fuzzy integrals (I) on fuzzy sets, (II), BUSEFAL, 62(1995) 67-70, 67(1996) 34-37.
- 9. D. Zhang and C. Cuo, Fuzzy number fuzzy measures, Fuzzy Systems and Math., 8 (1994) (special issue) 193 195 (in Chinese).