INTUITIONISTIC FUZZY RELATIONS

Author:

Ranjit Biswas

Department of Mathematics

Indian Institute of Technology Kharagpur - 721302, West Bengal

INDIA

E-mail:

ranjit@maths.iitkgp.ernet.in

Abstract :

We define intuitionistic fuzzy relations (IFRs), intuitionistic fuzzy tolerance relations (IFTRs), intuitionistic fuzzy equivalence relations (IFERs) and study some propositions.

Keywords:

Intuitionistic fuzzy set, fuzzy set, intuitionistic fuzzy relation, intuitionistic fuzzy tolerance relation, intuitionistic fuzzy equivalence relation.

1. INTRODUCTION

The notion of intuitionistic fuzzy sets (IFSs) was introduced by Atanassov [1] as a generalization of the notion of Zadeh's fuzzy sets [6]. Where fuzzy sets can be viewed as IFSs, but not conversely. Atnassov in [1] said it with an example. He also defined in [1,5] various operations on IFSs.

2. PRELIMINARIES

We given below some basic preliminaries.

Definition 2.1

If E is any set, a mapping

$$\mu_A : E \longrightarrow [0,1]$$

is called a fuzzy subset of E.

Definition 2.2

Let A be a fuzzy subset of a set E. Then complement of A is \textbf{A}^{C} with membership function $\,\mu_{A}^{C}$ defined by

$$\mu_{A}^{C}(x) = 1 - \mu_{A}(x), \forall x \in E$$
.

Definition 2.3

Let a set E be fixed. An IFS A in E is an object having the form

$$A^* = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle | x \in E \}$$

where the functions $\mu_A: E \longrightarrow [0,1]$ and $\gamma_A: E \longrightarrow [0,1]$ define the degree of membership and the degree of non-membership respectively of the element $x \in E$ to the set A,

which is a subset of E, and for every $x \in E$:

$$0 \le \mu_{A}(x) + \gamma_{A}(x) \le 1.$$

Definition 2.4

If A and B are two IFSs of the set E, then

A
$$\in$$
 B iff ($\forall x \in E$) ($\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$)

 $A \supset B$ iff $B \subset A$.

A = B iff (
$$\forall x \in E$$
) ($\mu_A(x) = \mu_B(x)$ and $\gamma_A(x) = \gamma_B(x)$)

$$\overline{A} = \{ \langle x, \gamma_A(x), \mu_A(x) \rangle \mid x \in E \}$$

$$A \cap B = \{ \langle x, \min(\mu_A(x), \mu_B(x)), \max(\gamma_A(x), \gamma_B(x)) \rangle | x \in E \}$$

A UB = {
$$< x$$
, max($\mu_A(x)$, $\mu_B(x)$), min($\gamma_A(x)$, $\gamma_B(x)$) $> |x \in E$ }

$$A + B = \{ \langle x, \mu_{A}(x) + \mu_{B}(x) - \mu_{A}(x), \mu_{B}(x), \gamma_{A}(x), \gamma_{B}(x) \rangle \big| x \in E \}$$

A.B = {
$$< x, \mu_A(x), \mu_B(x), \gamma_A(x) + \gamma_B(x) - \gamma_A(x), \gamma_B(x) > | x \in E$$
}

$$\Box A = \{ < x, \mu_{A}(x), 1 - \mu_{A}(x) > | x \in E \}$$

$$\Diamond A = \{ \langle x, 1 - \gamma_A(x), \gamma_A(x) \rangle | x \in E \}.$$

Obviously every fuzzy set has the form

$$\{ \langle x, \mu_{A}(x), \mu_{A}c(x) \rangle : x \in E \}.$$

In [1], Atanassov gave an example of an IFS which is not a fuzzy set. From now onwards in this paper, by an IFS A we shall mean the IFS (A, $\mu_{\rm A}$, $\nu_{\rm A}$), where the meaning is obvious.

3. INTUITIONISTIC FUZZY RELATIONS

Definition 3.1

Let X and Y be two sets. An intuitionistic fuzzy relation (IFR) R from X to Y is an IFS of X X

characterized by the membership function μ_R and non-membership function ν_R . An IFR R from X to Y will be denoted by R (X —> Y).

Definition 3.2

If A is an IFS of X, the sup-inf composition of the IFR R (X \longrightarrow Y) with A is an IFS B of Y denoted by B = R o A, and is defined by the membership function

$$\mu_{RoA}(y) = \bigvee_{x} \{ \mu_{A}(x) \land \mu_{R}(x,y) \}$$

and the non-membership function

$$v_{\text{RoA}}(y) = \bigwedge_{x} \{ v_{\text{A}}(x) \ V \ v_{\text{R}}(x,y) \}, \quad \forall y \in Y.$$

(where $V = \sup_{\bullet} \Lambda = \inf$).

Definition 3.3

Let Q (X \longrightarrow Y) and R (Y \longrightarrow Z) be two IFRs. The sup-inf composition R o Q is an intuitionistic fuzzy relation from X to Z,

defined by the membership function

$$\mu_{RoQ}(x,z) = \bigvee_{y} \{ \nu_{\mathbf{Q}}(x,y) \wedge \nu_{\mathbf{R}}(y,z) \}$$

and the non-membership function

$$\mu_{\text{RoQ}}(x,z) = \bigwedge_{y} \{ \nu_{\text{Q}}(x,y) \mid_{\text{V}} \nu_{\text{R}}(y,z) \}$$

 $\forall (x,z) \in X \times Z \text{ and } \forall y \in Y.$

Definition 3.4

An IFR R ($X \longrightarrow X$) is said to be

(i) reflexive: iff $\forall x \in X$, $\mu_R(x,x) = 1$, and $\nu_R(x,x) = 0$.

(ii) symmetric : iff
$$\forall x_1, x_2 \in X$$
,
$$\mu_R(x_1, x_2) = \mu_R(x_2, x_1) \text{ and } \\ \nu_R(x_1, x_2) = \nu_R(x_2, x_1).$$

Definition 3.5

If R is an IFR on $X \times Y$, its inverse R^{-1} is an IFR on $Y \times X$ such that $\forall (y,x) \in Y \times X$

$$\mu_{R}^{-1}(y,x) = \mu_{R}(x,y)$$
 and $\nu_{R}^{-1}(y,x) = \nu_{R}(x,y)$.

Proposition 3.1

If R and S are two IFRs on X \times Y and Y \times Z respectively, then

(i)
$$(R^{-1})^{-1} = R$$

(ii) $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$

Proof : We prove only (ii)

Clearly, SoR: X \longrightarrow Z and R^{-1} o S^{-1} : Z \longrightarrow X. Now, $\mu_{(SoR)^{-1}}(z,x) = \mu_{SoR}(x,z)$ $= \bigvee_{y} \{ \mu_{R}(x,y) \wedge \mu_{S}(y,z) \}$ $= \bigvee_{y} \{ \mu_{R^{-1}}(y,x) \wedge \mu_{S^{-1}}(z,y) \}$ $= \bigvee_{y} \{ \mu_{S^{-1}}(z,y) \wedge \mu_{R^{-1}}(y,x) \}$

$$= \mu_{R^{-1} \text{ o } S^{-1}}(z,x)$$

Similarly we can show that

$$v$$
(S o R)⁻¹(z,x) = v
R⁻¹ o S⁻¹(z,x)

Hence proved.

Definition 3.6

An IFR R on M x M is said to be transitive if $R^2 \subseteq R$ where $R^2 = R$ o R and the notion of " \subseteq " is as defined by Definition 2.4.

Definition 3.7

The transitive closure of an IFR R on M x M is \hat{R} defined by $\hat{R} = R U R^2 U R^3 U \dots$

where the operation of union is as defined in Definition 2.4.

Definition 3.8

An IFR R on $M \times M$ is called an intuitionstic fuzzy transitive relation (IFTR) if R is reflexive and symmetric.

Definition 3.9

An IFR R on $M \times M$ is called an intuitionistic fuzzy equivalence relation (IFER) if R is reflexive, symmetric and transitive.

Proposition 3.2

If R is an IFTR on M x M and R₁ is an IFER on M x M such that $R \subseteq R_1$, then $\hat{R} \subseteq R_1$ where \hat{R} is the transitive closure of R.

Proof.
$$\hat{R} = \bigcup_{n=1}^{\alpha} R^n \subseteq \bigcup_{n=1}^{\alpha} R_1^n = \hat{R}_1 = R_1.$$

Proposition 3.3

If R₁ and R₂ are two IFTRs on M x M, then R₁ U R₂, R₁ \cap R₂, R₁⁻¹ and \hat{R}_1 are also IFTRs.

Proof: We prove only for $R_1 \cup R_2$. We have $\forall x \in M$

$$\mu_{R_1 \cup R_2}(x, x) = \mu_{R_1}(x, x) \vee \mu_{R_2}(x, x) = 1$$

$$\nu_{R_1 \cup R_2}(x, x) = \nu_{R_1}(x, x) \wedge \nu_{R_2}(x, x) = 0$$

=> R₁ U R₂ is reflexive.

Again, $\forall x_1, x_2 \in M$

$$\begin{array}{rclcrcl} \mu_{R_1 & \cup & R_2}(x_1, x_2) & = & \mu_{R_1}(x_1, x_2) & \vee & \mu_{R_2}(x_1, x_2) \\ \\ & = & \mu_{R_1}(x_2, x_1) & \vee & \mu_{R_2}(x_2, x_1) \\ \\ & = & \mu_{R_1 & \cup & R_2}(x_2, x_1) \end{array}$$

Similarly, $v_{R_1} \cup R_2^{(x_1, x_2)} = v_{R_1} \cup R_2^{(x_2, x_1)}$

=> R₁ U R₂ is symmetric. Hence proved.

Proposition 3.4

If R is an IFTR on M \times M, then \Box R and \Diamond R are also so. Proof: Straight forward.

REFERENCES

- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1) (1986) 87-96.
- [2] K. Atanassov, Two operators on intuitionistic fuzzy sets, Comptes Rendus de l'Academic Bulgare des Science 41(5) (1988) 35-38.
- [3] K. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets and Systems. 33(1) (1989) 37-46.
- [4] K. Atanassov, A. universal operator over intuitionistic fuzzy sets, Comptes Rendus de l'Academic Bulgare des Sciences 46(1) (1993) 13-15.
- [5] K. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1994) 137-142.
- [6] L.A. Zadeh, Fuzzy Sets, Inform. and Control. 8 (1965) 338-353.