S-fuzzy subgroup

Zhang Cheng

(Department of Mathematics, Dalian University, Dalian 116622, P. R. China)

Abstract: In this paper, concept of s-fuzzy subgroup of a group G is given, s-fuzzy subgroup is based on s-norm and is a new kind of fuzzy subgroup, we give concepts of normal s-fuzzy subgroup and the lower image of homomorphism and discuss their properties.

Keywords: Group, s-fuzzy subgroup, homomorphism

The concept of fuzzy subgroup of a group G was introduced by Rosenfeld^[1] in 1971. Later, J. M. Anthony and H. sherwood generalize the fuzzy subgroup to a t-norm^[2]. The fuzzy subgroup in [2] is called a t-fuzzy subgroup by us. A fuzzy subset H of a group G is said to be a t-fuzzy subgroup if t is a t-norm and for all $x, y \in G$

(i)
$$H(xy) \ge t(H(x), H(y))$$
; (ii) $H(x^{-1}) \ge H(x)$

In this paper, we extend this concept to s-norm.

Definition 1. A mapping $S:[0,1]\times[0,1]\to[0,1]$ is called a s-norm if for all $\lambda,\mu,\xi,\eta\in[0,1]$

- $(1)S(\lambda,0)=\lambda,S(\lambda,1)=1;$
- (2)S(λ,μ)=S(μ,λ);
- $(3)\lambda \leq \xi, \mu \leq \eta \Rightarrow S(\lambda, \mu) \leq S(\xi, \eta);$
- $(4)S(\lambda,S(\mu,\xi))=S(S(\lambda,\mu),\xi).$

For example $S_0(\lambda,\mu) = \max\{\lambda,\mu\}$ is a s-norm.

Definition 2. Let S_1, S_2 be s-norms. If $S_1(\xi, \eta) \geqslant S_2(\xi, \eta)$ for any $\xi, \eta \in [0, 1]$, then we denote $S_1 \geqslant S_2$.

Remark. (1) Let S be a s-norm, then $S \ge S_0$.

(2)S=S₀ if and only if $S(\xi,\xi)=\xi, \forall \xi \in [0,1]$.

Definition 3. Let S be a s-norm. A fuzzy subset H of a group G is said to be a s-fuzzy subgroup if for all $x, y \in G$

 $(1)H(xy) \leq S(H(x),H(y));(2)H(x^{-1}) \leq H(x).$

Theorem 1. Let H be a fuzzy subset of a group G, e is identity of group G. If

$$S(H(x),H(e)) \leq H(x), \forall x \in G$$

then H is a s-fuzzy subgroup of group G if and only if $H(xy^{-1}) \leq S(H(x), H(y))$.

Proof. " \Rightarrow " Let H is a s-fuzzy subgroup of G then

$$H(xy^{-1}) \leq S(H(x), H(y^{-1})) \leq S(H(x), H(y)).$$

"
$$\Rightarrow$$
" $H(xy^{-1}) \leq S(H(x), H(y)), \forall x, y \in G.$

Let x=e, then $H(y^{-1}) \leq S(H(e),H(y)) \leq H(y)$, it follows that $H(xy)=H(x(y^{-1})^{-1})$

$$\leq S(H(x),H(y^{-1})) \leq S(H(x),H(y)).$$

So H is a s-fuzzy subgroup of group G.

Definition 4. (1) Let G and G' be groups. $f: G \rightarrow G'$ is a homomorphism, H is a fuzzy subset of G. We define:

$$f(H)(y) \triangleq \inf_{f(x)=y} H(x)$$

then f(H) is said to be lowerimage of H.

(2) f is said to be accessible if for all $y \in f(G)$, there exists $x_0 \in G$ such that $f(x_0) = y$ and $f(H(y)) = H(x_0)$.

Theorem 2. Let G and G' be groups. $f:G \rightarrow G'$ is a group homomorphism.

- (1) If H is a s-fuzzy subgroup of G and f is accessible, then f(H) is a s-fuzzy subgroup of G'.
- (2) Let B be a s-fuzzy subgroup of G', then $f^{-1}(B)$ is a s-fuzzy subgroup of G. where $f^{-1}(B)(x) = B(f(x))$.

Proof (1) Let H be a s-fuzzy subgroup of G, for any $y_1, y_2 \in G'$, Let $f(x_i^0) = y_i$ and $f(H)(y_i) = \inf_{f(x) = y_i} H(x) = H(x_i)(i=1,2)$, then

$$f(H)(y_1y_2) = \inf_{f(x_1) = y_1y_2} H(x) \leqslant \inf_{\substack{f(x_1) = y_1 \\ f(x_2) = y_2}} H(x_1x_2)$$

$$\leq \inf_{\substack{f(x_1)=y_1\\f(x_2=y_2)}} (S(H(x_1),H(x_2)) \leq S(H(x_1^0),(H(x_2^0)) = S(f(H_1)(y_1),f(H)(y_2))$$

$$f(H)(y_1^{-1}) = \inf_{f(x_1^{-1}) = y_1^{-1}} H(x_1^{-1}) = \inf_{f(x_1) = y_1} H(x_1) = f(H)(y_1)$$
. So $f(H)$ is a s-fuzzy

subgroup of G'.

(2) is clear.

Definition 5. Let H be a s-fuzzy subgroup of group G, for any $a \in G$ we define

$$(aH)(x) = H(a^{-1}x), \forall x \in G;$$

 $(Ha)(x) = H(xa^{-1}), \forall x \in G.$

then aH and Ha are called as left coset and right coset of H respectively.

Theorem 3. Let H be a s-fuzzy subgroup of group G, if for any $x \in G$ we have

$$S(H(x),H(e)) \leq H(x)$$

then aH = bH if and only if $H(a^{-1}b) = H(e)$.

Definition 6. A s-fuzzy subgroup H of group G is said to be a normal s-fuzzy subgroup of G if $H(xyx^{-1}) \leq H(y)$, $\forall x,y \in G$.

Theorem 4. Following conditions are equivalent

- (1) H is a normal s-fuzzy subgroup of group G;
- $(2)H(xy)=H(yx), \forall x,y \in G;$
- $(3)aH = Ha, \forall a \in G$

Theorem 5. Let G and G' be groups $f:G \rightarrow G'$ is an epimorphism

(1) If H is a normal s-fuzzy subgroup of G, Then f(H) is a normal s-fuzzy subgroup of G'.

(2) If B is a normal s-fuzzy subgroup of G', then $f^{-1}(B)$ is a normal s-fuzzy subgroup of G. Proof: By theorem 2. we know that f(H) and $f^{-1}(B)$ and s-fuzzy subgroup.

(1) For any $y_1, y \in G'$

$$f(H)(y_1y_1^{-1}) = \inf_{f(x) = y_1yy_1^{-1}} H(x) \leqslant \inf_{\substack{f(x) = y \\ f(x_1) = y_1}} H(x_1xx_1^{-1}) \leqslant \inf_{f(x) = y} H(x) = f(H)(y).$$

(2) For any $x, y \in G$

$$f^{-1}(B)(xyx^{-1})=B(f(xyx^{-1}))=B(f(x)f(y)f(x)^{-1})\leq B(f(y))=f^{-1}(B)(y).$$

Definition 7. Let A, B be fuzzy subsets of group G, A fuzzy subset AB of G of the form $(AB)(x) = \inf_{a \in G} S(A(a), B(a^{-1}x))$ is said to be product of A and B.

Theorem 6. Let H be a normal fuzzy subgroup of group G and for any $x \in G$ $S(H(x), H(e)) \leq H(x)$, then (xH)(yH) = (xy)H.

Proof. For any $z \in G$

$$(xyH)(z) = H((xy)^{-1}z) = H(y^{-1}x^{-1}z) = H(y^{-1}x^{-1}ayy^{-1}a^{-1}z)$$

$$\leq S(H(y^{-1}x^{-1}ay), H(y^{-1}a^{-1}z)) = S((yHy^{-1})(x^{-1}a), H(y^{-1}a^{-1}z))$$

$$\leq S(H(x^{-1}a), H(y^{-1}a^{-1})z) = S((xH)(a), (yH)(a^{-1}z))$$

So
$$(xyH)(z) \le \inf_{a \in G} S((xH)(a), (yH)(a^{-1}z)) = ((xH)(yH))(z)$$

Hence $(xy)H\subseteq (xH)(yH)$

For any $z \in G$

$$((xH)(yH))(z) = \inf_{e \in a} S((xH)(a), (yH)(a^{-1}z)) \le S((xH)(x), (yH)(x^{-1}z))$$

$$= S(H(e), H(y^{-1}x^{-1}z)) \le H(y^{-1}x^{-1}z) = (xyH)(z)$$

So $(xH)(yH) \subseteq (xy)H$. Hence (xH)(yH) = (xy)H.

Theorem 7. Let H be a normal s-fuzzy subgroup of group G and $G/H = \{aH \mid a \in G\}$. Let (aH)(bH) = abH, then G/H form a group, G/H is called the quotient group of G module H.

Theorme 8. Let H be a normal s-fuzzy subgroup of group G, Let $N = \{x \mid x \in G \text{ and } H(x) = H(e)\}$ then N is a normal subgroup of G and G/H is isomorphic with G/N.

References

- [1]A. Rosenfeld. Fuzzy gruops. J. Math. Anal. Appl.; 35(1971) 521-517.
- [2]J. M. Anthong and H. sherwood. Fuzzy Gruops Redefined. J. Math. Anal. Appl., 69(1979) 124—130.
- [3]J. B. Kim and Y. H. Kim. Fuzzy Symmetric groups. Fuzzy Sets and Systems. 80(1996) 383—388.