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ABSTRACT ; This paper bring forward the concept of nonexpansive type
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the corresponding recent important results.
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1 INTRODUCTION AND PRELIMINARIES

It is known that,for a wide class of unbounded closed convex sets , multi-
valued nonexpansive point- compact self- mappings may exist which fail to
have a fixed point,so it is importmt to study the problem of existence of fixed
points for nonexpansive maps defined on closed convex unbounded subsets. In
[1,2,3] analogous problems are treated for single-valued mappings. In 1991,
Marino. G, Canetti. A give some fixed point theorems for multivalued map-
pings defined on Unbounded Sets in Banach spaces [ 4,5 ],these theorems uni-
fies and improves the corrspoading results in [1,2,3]. In 1996 ,Zhang Xian
give some new improvements [ 6 ]. This paper bring forward the concept of
nonexpansive type fuzzy mappings in Banach spaces, for these mappings de-
fined on Unbounded sets,we give some fixed point theorems,our theorems im-

prove and generalize the corresponding results in [1,2,3,4,5,6].
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Throughout this paper,let ( X, || « || ) be a Banach space, K & X,
CB(X)(CB(K)) be collection of all nonempty closed bounded subsets of
X(K),C(X)(C(K)) be collection of all nonempty compact subsets of X(K)
,for any A € CB(X),Co(A) be the closed convex hull of A,d(z,A) = 12£ | =
—y || ,for any A,B € CB(X) ,we note with H(A,B) the Hausdorff di'stance
induced by the norm of X ,i. e.

H(A,B) = maz{fged(a,B),fggd(b,'A)}
A multivalued mapping 7 ; K — CB(X) is said to be Lipschitzian if
H(Tz, TP < L|z—y| ,¥ 2,9y € K, (1. 1)
Where L = 0
T is said to be a contraction if L < 1 and nonexpansive if L = 1.

For K C X ,a mapping A; K— [ 0,1 ] is called a fuzzy subset over K ,we
denote by F (K) the family of all fuzzy subsets over K ,a mapping F; K —
F (K) is called fuzzy mapping over K ,let A € F (K),a € [0,1] ,set Aa
= {z|A(z) = a,2z € K} is called the o -cut set of A.

Let F; K-> & (K),0(z) ;K — [0,1] ,throughout this paper we denote
(F2)ow by Fz set,i.e. , Fz = (F2)owV z € K.

DEFINITION 1. 1. Let {F;K — & (K) be a fuzzy mapping, O(z) ;
K — (0,1] be a function,if ¥V z € K,Fz € C(K) and

HFz,Fp < |z — 9|,V 2,9 €K (1. 2)
then the say that F for O(z) be the nonexpansive type fuzzy mappings.

DEFINITION 1. 2. Let F; K =& & (K) be a fuzzy mapping,if p € K
such that Fp(p) = a ,then we say that the fixed degree of p for F = a ,if
Fp(p) = maxFp(u), we say that F has the maximun fixed degree at p ,or that

v € K

pis a fixed point of F .

DEFINITION 1. 3. Forz,y € X,KC X, let GL(z,y,K) = {z €
Kllz—yl|l < ||lz—2z| }forr€ X,AC X, K X, letGL(2,4A,K) =
(z€ K|3 a€ A ||lz—a| <z—2z]} =LGJAGL(z,a,K).
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2 MAIN RESULTS

THEOREM 2. 1. Let X be a Bamach space whose bounded closed con-
vex subsets have the fixed point property for multivalued nonexpansive point-
compact self-mappings, K be a closed convex subset of X,F; K—> 5 (K) bea
fuzzy mapping. ,

(1) If there exsits a function O(z) ; K — (0,1 ] such that for allz € K,
Fx € C(K),F for O(z) be the nonexpansive type fuzzy mappings,and for
some zo € K the set GL(zo, CoFzy, K) is bounded, then there exisists P €K
such that Fp(p) = 0(p).

(2) In particular,if F for O(z) = maxFz(u) satisfies the conditions in

€ K
(1) ,then F has fixed point p € K .

PROOF. If z, € Fzy ,thus Fzo(2) == O(zy) ,we have p = z, . Assume z,
& Fzy ,set |
R = 4sup{H({z},CoFzx,) yz € GL(,CoFz¢,K))}
8= {z€ K|3 v € OoFzy, ||y — v | <R}
it is easy to prove that S is nonempty, closed, convex and bounded, we will
show that¥ = € S,Fz C §.
Since K be a closed convex subset of X,z & K ,therefore CoFz, — K ,

for any u € %f‘xo,ﬂi;——z—q € K.

If zE€ S () GL(z,CoFz,K) ,by z € GL(zy,CoFzo,K) we have H({z},
CoFzy) <—1-:—, for any u € CoFzy, by 2 .;- 2u € Kand | & -g 2 _ | =

2

glho—ul <Zlz—ull = 1 252 o) jwenave 2t 2
3 3 3 3
GL(z0,u,K) < GL(z,,CoFz0, K), thus -13 > H({® '{3' 24 | CoFrzs) = |
z°_}3_2u—u|[ ==%|| 2o — u || , therefore || zo — u || Q%R,wehave | =z

R ~ o~
—nl <lz—ull + lu—zol <%+ 38 =k Sine 72,70 € c0),

F for O(z) be the nonexpansive type fuzzy mappings,by Nadler theorem, V a
€ Fz3 b € Frosuch that ||a—b || <HFz,F20) < || z— 20 || <R, there-
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fore a € S ,we have Fz C 8.

If z€ Sand z & GL(z,,CoFzy,K) ,tHen 3 v € CoFx, such that || z —
vl <Rand ||z—o || = |z—2 || sthus HFz,Fao) < || z—20 | < || 2
— v | <R,V a € Fzby Nadler theorem 3 b € Fzysuch that || — b || <
H(Fz,Fzy) < R, thereforea € S ,we have FzC § .

By § is nonempty,closed,convex and bounded, F .8 — 2% is the multival-
ued nonexpansive point-compact self-mappings and X be a Banach space whose
bounded closed convex subsets have the fixed point property for these pap-
pings,we have p € S & K such that p € Fp ,i.e. , Fp(p) = 0(p).

In particular, if O(z) = maxFz(u), we have Fp(p) = mea)éFp(u) =

v € K

Fp(p), therefore Fp(p) = maxFp(u), i.e. , p be a fixed point of F.
€ K

COROLLARY 2. 2. Let Z, K satisfy the conditions of theorem 2. 1,
let T ; K — C(K) nonexpansive. If there exists zo € K such that GL(zy,CoTz,,
K) is bounded then exsits p € K,p € Tp ,i.e. , pis a fixed point of T . _

PROOF. From T'; K — C(K), we can define that F; K = % (K) such
thatY z € K,

Fr(u) = {l,u € Tz

O,u & Tx

and letO(z)=1,VY z € K, then F for O(z) satisfies the conditions (2) in theo-
rem 2. 1,moreover Tz, = Fz, ,by theorem 2. 1,conclution holds.

Vu€E K

By the corollary 2. 2,we have.

COROLLARY 2. 3. Let X, K satisfy the conditions of theorem 2. 1,
let f: K — K single-valued nonexpansive, if there exists z, € K such that
GL(xy,fxe,K) is bounded,then there exsists p € K, is a fixed point of f .

REMARK 2. 4. If is obvious GL(z,y,K) = {z€ K| ||z—y| <
lz—zll}S{z€K||lz—yll < |ly—=2| } =6(x,y,K), and it is easy
to see that GL(z,y,K) & {2 € K|v(z — z,y — 2) < 0} = LS(x,y,K),
hence the corollary 2. 2 improves [4,Th. 1],[5. Th. 1] and [6. Th. 2], the
corollary 2. 3 improves and generalizes the corresponding results of [1,2,3],
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theorem 2. 1 unifies and improves the corresponding results in [1,2,3,4,5,

6].
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