ON SOME TYPES OF FUZZY CONTINUOUS MULTIFUNCTIONS

O.Bedre Özbakir and G. Aslim
Department of Mathematics, Ege University,
35100 Bornova- Izmir, TURKEY

Abstract: The concept of fuzzy θ -continuous and fuzzy weakly δ -continuous multifunctions are introduced and studied in the light of q-coincidence. Later it has been presented some counter-examples related to the these fuzzy multifunctions.

Keywords: Fuzzy lower and upper θ -continuous; fuzzy lower and upper weakly δ -continuous; fuzzy lower and upper inverse of a fuzzy multifunction.

1. Introduction

The concept of fuzzy multifunctions was introduced and extended to the concepts of fuzzy upper and lower semi-continuous multifunctions by Papageorgiou [6]. In [5] Mukherjee and Malakar introduced and investigated fuzzy almost continuity and fuzzy weakly continuity on fuzzy multifunctions by using the concept of quasi-coincidence of Pu and Liu[7,8]. In this paper fuzzy θ -contunity and fuzzy weakly δ -contunity given by Mukherjee and Sinha[4] are extended to fuzzy multifunctions. Also it is shown that fuzzy θ -continuous multifunctions given by the author, fuzzy semi-continuous multifunctions given by Mukherjee and Sinha [4] are independent of each other.

2. Preliminaries

The definitions of fuzzy sets, fuzzy point, fuzzy topology, fuzzy regular open (closed) sets, concept of quasi-coincidence and other related concepts can be found in [1,2,7,8,9]. For the concept of fuzzy δ -closed(open) set, fuzzy neigbourhood (nbd for short), fuzzy θ -nbd and some theorems see [4] and the definitions of fuzzy extremally disconnected spaces can be found in [3].

Throughout the paper, by (X,τ) or simply by X we will mean a topological space in the classical sense , and (Y,τ_Y) or simply Y will stand for a fuzzy topological space (fts for short) as defined by Chang [2]. Fuzzy sets of Y will be denoted by the α,β,μ ...etc. Int μ , Cl μ and μ ' =1- μ will denote respectively the interior, closure and complement of fuzzy set.

Definition 2.1 [6]. Let (X,τ) be a topological space in the classical sense and (Y,τ_Y) be an fts. F:X \to Y is called a fuzzy multifunctions iff for each $x\in X$, F(x) is a fuzzy set in Y.

Throughout the paper, unless otherwise stated by $F:X\to Y$ we will mean that F is a fuzzy multifunction from a classical topological space (X,τ) to an fts (Y,τ_Y) .

Definition 2.2 [5]. For a fuzzy multifunction F:X \rightarrow Y, the upper inverse F⁺(μ) and lower inverse F⁻(μ) of a fuzzy set μ in Y are defined as follows: F⁺(μ) = { x \in X : F(x) \leq μ }, F⁻(μ) = { x \in X : F(x) \leq μ },

Theorem 2.3 [5]. For a fuzzy multifunction F:X \rightarrow Y, we have F⁻(1- μ)= X / F⁺(μ), for any fuzzy set μ in Y.

Definition 2.4 [5]. A fuzzy multifunction F:X→Y is called

- a) fuzzy lower semi-continuous (f.l.s.c., in short) at a point $x_0 \in X$ iff for every fuzzy open set μ in Y with $x_0 \in F^-(\mu)$, there exists an open nbd U of x_0 in X such that $U \subset F^-(\mu)$, i.e., $F(x)q\mu$ for each $x \in U$;
- b) fuzzy upper semi-continuous (f.u.s.c., in short) at a point $x_0 \in X$ iff for every fuzzy open set μ in Y with $x_0 \in F^+(\mu)$, there exists an open nbd U of x_0 in X such that $U \subset F^+(\mu)$, i.e., $F(x)q\mu$ for each $x \in U$;
 - c) f.l.s.c. (f.u.s.c.) on X iff it is respectively so at each $x_0 \in X$.

Theorem 2.5 [5]. A fuzzy multifunction F:X \rightarrow Y is f.l.s.c. iff for any fuzzy open set β in Y, F⁻(β) is open in X.

Theorem 2.6 [6]. A fuzzy multifunction F:X \rightarrow Y is f.u.s.c. iff for any fuzzy open set β in Y, F⁺(β) is open in X.

Definition 2.7 [5]. A fuzzy multifunction F:X→Y is called

- a) fuzzy lower almost continuous (f.l.a.c.,in short) at some point $x_0 \in X$ iff for every fuzzy open set μ in Y with $x_0 \in F^-(\mu)$, there exists an open nbd U of x_0 such that $U \subset F^-(IntCl\mu)$;
- b) fuzzy upper almost continuous (f.u.a.c., in short) at some point $x_0 \in X$ iff for every fuzzy open set μ in Y with $x_0 \in F^+(\mu)$, there exists an open nbd U of x_0 such that $U \subset F^+(IntCl\mu)$;
 - c) f.l.a.c. (f.u.a.c.) on X iff F is respectively so at each $x_0 \in X$.

Definition 2.8[5]. A fuzzy multifunction $F:X\rightarrow Y$ is said to be

- a) fuzzy lower weakly continuous (f.l.w.c., in short) at some point $x_0 \in X$ iff for every fuzzy open set μ in Y with $x_0 \in F^-(\mu)$, there exist an open nbd U of x_0 such that $U \subset F^-(C|\mu)$;
- b) fuzzy upper weakly continuous (f.u.w.c.,in short) at some point $x_0 \in X$ iff for every fuzzy open set μ in Y with $x_0 \in F^+(\mu)$, there exist an open nbd U of x_0 such that $U \subset F^+(C|\mu)$;
 - c) f.l.w.c. (f.u.w.c.) on X iff F is respectively so at each $x_0 \in X$.

Definition 2.9. A fuzzy multifunction F:X→Y is called

- a) fuzzy lower θ -continuous (f.l. θ -c., in short) at a point $x_0 \in X$ iff for every fuzzy upper set μ in Y with $x_0 \in F^-(\mu)$, there exists an open nbd U of x_0 such that $CIU \subset F^-(CI\mu)$;
- b) fuzzy upper θ -continuous (f.u. θ -c., in short) at a point $x_0 \in X$ iff for every fuzzy open set μ in Y with $x_0 \in F^+(\mu)$, there exists an open nbd U of x_0 such that $CIU \subset F^+(CI\mu)$;
 - c) f.l. θ -c. (f.u. θ -c) on X iff F is respectively so at each $x_0 \in X$.

Theorem 2.10. If $F:X \rightarrow Y$ is an $f.l.\theta$ -c. multifunction, then the followings are true:

a) $[F^+(\beta)]_{\theta} \subset F^+([\beta]_{\theta})$, for every fuzzy set β in Y.

- b) $[F^+(\mu)]_{\Theta} \subset F^+(Cl\mu)$, for every fuzzy open set μ in Y.
- c) For each fuzzy θ -closed set γ in Y, F⁺(γ) is θ -closed in X.
- d) For each fuzzy θ -open set λ in Y, $F(\lambda)$ is θ -open in X.

Proof.(a): Let $x \in [F^+(\beta)]_{\theta}$ and let μ be any open q-nbd of y_{α} for which $y_{\alpha} \in F(x)$. By f.l. θ -continuity of F, there exist an open nbd U of x such that $F(z)qCl\mu$ for all $z \in ClU$. Since $x \in [F^+(\beta)]_{\theta}$, there exist $z_{0} \in X$ such that $z_{0} \in ClU \cap F^+(\beta)$. If $z_{0} \in ClU$ then $F(z_{0})qCl\mu$ and if $z_{0} \in F^+(\beta)$ then $F(z_{0})qCl\mu$ and if $z_{0} \in F^+(\beta)$ then $F(z_{0})qCl\mu$ and $y_{\alpha} \in [\beta]_{\theta}$. Then $x \in F^+([\beta]_{\theta})$ and hence $[F^+(\beta)]_{\theta} \subset F^+([\beta]_{\theta})$.

- (b): Since μ is fuzzy open in Y, $Cl\mu=[\mu]_{\theta}$ and we have from (a) $F^+(\beta)]_{\theta} \subset F^+([\mu]_{\theta})=F^+(Cl\mu)$.
- (c): Let y be a fuzzy closed in Y. We have $y = [y]_{\theta}$. By (a),
- $[F^+(\gamma)]_{\theta} \subset F^+([\gamma]_{\theta}) = F^+(\gamma) \Rightarrow [F^+(\gamma)]_{\theta} = F^+(\gamma)$ and the result follows.
- (d): Straightforward.

Theorem 2.11. If $F:X\to Y$ is f.l.0-c., then for each fuzzy set μ in Y, F [Int(γ_θ)] \subset Int[F (γ)] θ . **Proof.** Obvious.

Definition 2.12. A fuzzy multifunction F:X→Y is called

a)fuzzy lower weakly δ -continuous (f.l.w. δ -c.,in short) at some point $x_0 \in X$ iff for every fuzzy open set μ in Y with $x_0 \in F^-(\mu)$, there exists an open nbd U of x_0 such that $IntCIU \subset F^-(CI\mu)$;

b)fuzzy upper weakly δ -continuous (f.u.w. δ -c., in short) at some point $x_0 \in X$ iff for every fuzzy open set μ in Y with $x_0 \in F^+(\mu)$, there exists an open nbd U of x_0 such that $IntCIU \subset F^+(CI\mu)$;

c) f.l.w. δ -c.(f.u.w. δ -c) on X iff F is respectively so at each $x_0 \in X$.

Theorem 2.13. For a fuzzy multifunction F:X→Y the following statements are equivalent:

- a) F is f.l.w. δ -c.
- b) $[F^+(\beta)]_{\delta} \subset F^+([\beta]_{\theta})$, for every fuzzy set β in Y.
- c) $F^+(\beta)$ is δ -closed in X, for every fuzzy θ -closed set β in Y.
- d) $F^{-}(\beta)$ is δ -open in X, for every fuzzy θ -open set β in Y.
- e) $F^{-}(\lambda)$ is δ -open in X, for every fuzzy regular open set λ in Y.
- f) For each point x of X and each fuzzy θ -nbd μ of y_{α} fuzzy point for which $y_{\alpha} \in F(x)$, then $F^{-}(\mu)$ is a δ -nbd of x.

Proof. (a) \Rightarrow (b): Let $x \in [F^+(\beta)]_\delta$ and $y_\alpha \in F(x)$. μ is fuzzy open set of y_α fuzzy point such that $x \in F^-(\mu)$. Since F is f.l.w. δ -c., there exist an open nbd U of x such that $IntCIU \subset F^-(CIU)$, i.e., $F(z)qCI\mu$ for all $z \in IntCIU$. Since $x \in [F^+(\beta)]_\delta \Rightarrow IntCIU \cap F^+(\beta) \neq \emptyset$. We have $z \in IntCIU \cap F^+(\beta)$. If $z \in IntCIU$ then $F(z)qCI\mu$ and if $z \in F^+(\beta)$ then $F(z) \leq \beta$. Thus $g \in IntCIU$ and hence $g_\alpha \in IntCIU \cap F^+(\beta)$ and so $g \in IntCIU$ and $g \in IntCIU$ and $g \in IntCIU$ then $g \in IntCIU$ and $g \in IntCIU$ and

- (b) \Rightarrow (c): Let β be a fuzzy θ -closed in Y,i.e., β =[β] $_{\theta}$. By hypothesis, [F⁺(β)] $_{\delta} \subset$ F⁺([β] $_{\theta}$) = F⁺(β).Hence F⁺(β)is δ -closed in X.
 - (c) \Rightarrow (d): Let β be a fuzzy θ -closed in Y. Then 1- β is a fuzzy θ -closed in Y, hence

 $F^+(1-\beta) = X - F^-(\beta)$ is δ -closed in X which implies $F^-(\beta)$ is δ -open in X.

- (d) \Rightarrow (e): Let λ be fuzzy regular open in Y. Since every regular open set is fuzzy δ -open, by(d) $F^-(\lambda)$ is δ -open in X.
- (e) \Rightarrow (a): Let $x \in X$ and $y_{\alpha} \in F(x)$. μ any fuzzy open q-nbd of y_{α} fuzzy point. Also , IntCl μ is fuzzy regular open q-nbd of y_{α} . Since F (IntCl μ) is δ -open in X, there exist an open nbd U of x such that $x \in U \subset IntClU \subset F$ (IntCl μ). Hence IntClU $\subseteq F$ (Cl μ).
- (a) \Rightarrow (f): Let $x \in X$ and $y_{\alpha} \in F(x)$. β is fuzzy θ -nbd of y_{α} fuzzy point. Then, There exist an open q-nbd μ of y_{α} such that $Cl\mu \not \alpha' \beta'$. Since F is f.l.w. δ -c., there exist an open nbd U of x such that $IntClU \subset F(Cl\mu) \subset F(\beta) \Rightarrow IntClU \cap [F(\beta)]^c = \emptyset$. Hence $F(\beta)$ is a fuzzy δ -nbd of x.
 - (f) \Rightarrow (a): One can use a similar technique as in (a) \Rightarrow (f).

Theorem 2.14. For a fuzzy multifunction F:X→Y the following statements are equivalent:

- a) F is f.l.w.δ-c.
- b) $[F^{-}(Int[\beta]_{\theta}) \subset Int[F^{-}(\beta)]_{\delta}$ for every β fuzzy set in Y.
- c) $[F^-(\mu)]_{\delta} \subset F^+(Cl\mu)$, for every μ fuzzy open set in Y.
- d) $F^{-}(\mu) \subset Int[F^{-}(Cl\mu)]_{\delta_{\tau}}$ for every μ fuzzy open set in Y.

Proof.(a) \Rightarrow (b): Let be β fuzzy set in Y. For a 1- β fuzzy set in Y, by Theorem 2.13(b) we have $[F^+(1-\beta)]_{\delta} \subset F^+([1-\beta]_{\theta}) \Rightarrow Int[F^-(\beta)]_{\delta} \subset F^-(Int[\beta]_{\theta})$.

- $(b) \Rightarrow (a)$: Obvious.
- (a) \Rightarrow (c): For a fuzzy open set μ in Y we have $\text{Cl}\mu=[\mu]_{\theta}$. From this equality we obtain the required implication easily.
- (c) \Rightarrow (d): Let μ be fuzzy open set in Y. Since 1-Cl μ is a fuzzy open set in Y, we have $[F^+(1-Cl\mu)]_{\delta} \subset F^+(Cl(1-Cl\mu)) \Rightarrow F^-(\mu) \subset Int[F^-(Cl\mu)]_{\delta}$.
- (d) \Rightarrow (a): For an arbitrary x \in X and arbitrary fuzzy open set μ in Y with x \in F (μ) . By(d),we have F (μ) \subset Int[F $(C|\mu)$] δ . Hence, there exist an open nbd U of x such that IntClU \subset F $(C|\mu)$, then F is f.l.w. δ -c.

3. Mutual Relationship

In section 2 we have observed the following implications diagram:

$$\begin{array}{cccc} f.l(u).s.c. & \Rightarrow & f.l(u).a.c. & \Rightarrow & f.l(u).w.c. \\ & & & & & & & \uparrow \\ f.l(u).\theta\text{-c.} & & \Rightarrow & & f.l(u).w.\delta\text{-c.} \end{array}$$

We now show by means of the following examples that none of the above implications can be reserved, in general. In these examples we use the notation $C_{\alpha}(0 \le \alpha \le 1)$ to denote the constant fuzzy set such that $C_{\alpha}(y) = \alpha$, for all $y \in Y$.

Example 3.1. Let $X=\{a,b\},Y=[0,1], \tau=\{X,\emptyset,\{a\}\},\tau_Y=\{C_0,C_1,C_{2/5}\}$ and let $F:(X,\tau)\to(Y,\tau_Y)$ be given by $F(a)=C_{11/2},F(b)=C_{11/12}$. It is obvious that F is f.l.0-c., but F is not f.l.s.c. because by Theorem 2.5., for

 $C_{1/5} \in T_Y$, $F^-(C_{2/5}) = \{b\} \notin T$.

Example 3.2. Let X and Y be the same as in Example 3.1 and be $\tau=\{X,\emptyset,\{b\}\},\tau_Y=\{C_0,C_1,C_{18},C_{84}\}$. Consider the fuzzy multifunctions $F:(X,\tau)\to(Y,\tau_Y)$ as follows $F(a)=C_{18}$, $F(b)=C_{12}$. F is f.u. θ -c, but since $F^+(C_{18})=\{a\}\notin \tau$ for $C_{18}\in \tau_Y$, F is not f.u.s-c.

Example 3.3. Let (X,τ) and Y be the same as in Example 3.2.and be $\tau_Y = \{C_0, C_1, C_{1/2}\}$. We define the fuzzy multifunction $F:(x,\tau) \to (Y,\tau_Y)$ by letting $F(a) = C_{1/2}$, $F(b) = C_{5/6}$. Then F is f.l.s.c but not f.l. θ -c.

Example 3.4. Let X={a,b} and Y=[0,1]. Let τ and τ_Y be respectively the topology on X and fuzzy topology on Y given by $\tau = \{X,\emptyset, \{a\}\}$ and $\tau_Y = \{C_0,C_1,C_{1/3}\}$. It is obvious that F is f.u.0-.c., but it is not f.u.s.c.

Examples 3.1., 3.2., 3.3. and 3.4. establish the following:

Theorem 3.5. Fuzzy lower (upper) semi continuity and fuzzy lower (upper) θ -continuity are independent notions.

Example 3.6. Let (X,τ) be as described in Example 3.5 and take $\tau_Y=\{C_0,C_1,C_{1/3},C_{2/3}\}$ on Y=[0,1]. Fuzzy multifunction $F:(X,\tau)\to(Y,\tau_Y)$ defined by $F(a)=C_{5/6}$, $F(b)=C_{1/2}$, $F(c)=C_{1/4}$.

From this example we can give:

A fuzzy multifunction F f.l.w.δ-c. mapping need not be f.l.θ-c. mapping.

Example 3.7. Let $X = \{a,b,c\}$ and Y = [0,1]. Let τ and τ_Y be respectively the topology on X and fuzzy topology on Y given by $\tau = \{X,\emptyset,\{b\},\{c\},\{b,c\}\},\tau_Y = \{C_0,C_1,C_{1/5},C_{5/8}\}$.

Define the fuzzy multifunction F:(X, τ) \rightarrow (Y, τ_{Y}) as follows F(a)=C_{1/2},F(b)=C_{1/6}, F(c)=C_{1/5}. Clearly F is f.u.w. δ -c but not f.u. θ -c.

Theorem 3.8. If a fuzzy multifunction $F:X\to Y$ is fuzzy lower (upper) weakly δ-continuous and X extremally disconnected, then F is fuzzy lower (upper) θ-continuous.

Proof. Obvious.

Example 3.9. Let(X, τ) be the same as in Example 3.7. and let be let $\tau_Y = \{C_0, C_1, C_{2/5}, C_{1/2}\}$ on Y=[0,1].

Define the fuzzy multifunction F: $(X,\tau) \rightarrow (Y,\tau_Y)$ as follows F(a)= $C_{7/8}$, F(b)= $C_{1/3}$. It is clear that F is f.l.w.c. but not f.l.w.δ-c.

Example 3.10. Let $X=\{a,b,c\},\tau=\{X,\emptyset,\{a\},\{b\}\}\}$ and let (Y,τ_Y) be the same as in Example 3.7. Consider the fuzzy multifunction $F:(X,\tau)\to(Y,\tau_Y)$ by letting $F(a)=C_{1/2}$, $F(b)=C_{2/3}$, $F(c)=C_{11/12}$.

It is easy to see that F is f.u.w.c.but not f.u.w.δ-c.

References

- [1] K.K. Azad, On semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14-32.
- [2] C.L. Chang, Fuzzy topological spaces J. Math. Anal. Appl. 24 (1968) 182-190.
- [3] D. Çoker and H. Es, On some strong forms of fuzzy continuity, Doga Tr. J. of Mathematics 14(1990)
- [4] M.N. Mukherjee and S.P. Sinha, On some near-fuzzy continuous functions between fuzzy topological spaces, Fuzzy sets and systems 34(1990) 245-254.
- [5] M.N. Mukherjee and S. Malakar, On almost continuous and weakly continuous fuzzy multifunctions, Fuzzy sets and systems 41(1991) 113-125.
- [6] N.S. Papageorgiu, Fuzzy topology and fuzzy multifunctions, J. Math. Anal. Appl. 109 (1985) 397-425.
- [7] Pao-Ming Pu and Ying-Ming Liu, Fuzzy topology, I. Neighbourhood structure of a fuzzy point and More-Smith convergence. J. Math. Anal. Appl. 76 (1980) 571-599.
- [8] Pao-Ming Pu and Ying-Ming Liu, Fuzzy topology, II. Product and quotient spaces. J. Math. Anal. Appl. 77 (1980) 20-37.
- [9] L.A. Zadeh, Fuzzy sets, Inform. And Control 8(1965) 338-353.