# Some Results of Hom Functor in Categories of $F_R^{\Lambda}$ -modules

#### Zhao Jianli

Department of Mathematics, Liaocheng Teachers College, Shandong, 252059, P. R. China

Abstract In this paper, we are to discuss the properties of Hom functor in categories of  $F_R^{\Lambda}$ -modules and give the some difference between the Hom functor in categories of  $F_R^{\Lambda}$ -modules and the Hom functor in categories of R-modules

**Keywords**  $F_R^*$ -module, F-homomorphism, category of  $F_R^*$ -modules, category of F-abel groups, F-exact sequence.

### 1. Introduction

[1-3] established the basic knowlege of theory of  $F_R^{\Lambda}$ -module, and provied the idea researching fuzzy ring from outside. In this paper, we will carry on the work of [1-3], study the properties of Hom functor in categories of  $F_R^{\Lambda}$ -modules.

Let X be a nonempty set, L be a complete distributive lattice (with 0 and 1), a fuzzy subset A on X is characterised by a mapping  $A: X \rightarrow L$ .  $X^L$  denotes the set of whole fuzzy subset of X. In this paper, R is a ring with identity  $1 \neq 0$  and module which involved is an unitary left R-module.

**Definition** 1.1. Let R is a ring,  $A \in \mathbb{R}^L$ , if for all  $x,y \in \mathbb{R}$ , we have:

1) $A(x-y) \geqslant A(x) \land A(y)$ ;

 $2)A(xy) \geqslant A(x) \land A(y);$ 

3)A(0)=1,

then A is called a fuzzy subring of R.

**Definition** 1. 2. [1] Let M be a left R-module, A a fuzzy subirng of R,  $B_M \in M^L$ , if for all  $x,y \in M, r \in R$ , we have

 $1)B_{M}(x-y) \geqslant B_{M}(x) \wedge B_{M}(y)$ 

$$2)B_{M}(0)=1$$

$$3)B_{M}(rx) \geqslant A(r) \wedge B_{M}(x)$$

then  $B_M$  is called an  $F_R^{\Lambda}$ -submodule (or  $F_R^{\Lambda}$ -module).

**Definition** 1. 3. Let N be a left R-submodule of M,  $B_M$  and  $C_N$  be  $F_R^{\Lambda}$ -submodule of M and N respectively, if for all  $x \in \mathbb{N}$ , we have

$$B_M(x) \geqslant C_N(x)$$

then C<sub>N</sub> is called an F-submodule of B<sub>M</sub>.

**Definition** 1. 4. Let M and N be two R-modules,  $f: M \rightarrow N$  be an R-homomorphism,  $B_M$  be an  $F_R^A$ -submodule of M,  $F_R^A$ -submodule  $f(B_M)$  of N is defined by

$$\widetilde{f}(B_{M})(y) = \begin{cases} \bigvee \{B_{M}(x) \mid x \in M, f(x) = y\}, & \text{if } f^{-1} \neq \emptyset, \\ 0, & \text{is } f^{-1}(y) = \emptyset, \end{cases}$$

for all  $y \in N$ .

**Definition** 1. 5. Let M and N be two left R-module,  $f:M \to N$  be an R-homomorphism,  $B_M$  and  $C_N$  be  $F_R^{\Lambda}$ -submodule of M and N, respectively, if  $\widetilde{f}(B_M) \leqslant C_N$ , then  $\widetilde{f}$  is an F-homomorphism from  $B_M$  into  $C_N$ , writes by  $\widetilde{f}: B_M \to C_N$ ,

**Definition** 1.6 The category of  $F_R^A$ -modules  $F_R^A$ -Mod is defined by:

- 1) Objects are all Fr-modules.
- 2) For all  $B_M$ ,  $C_N \in Obj$   $(F_R^A Mod)$ , the set of morphisms is

Hom  $(B_M, C_N) = \{ \widetilde{f} \mid \widetilde{f} \text{ is an arbityary F-homomorphism from } B_M \text{ into } C_N \},$ 

3) For all  $\widetilde{f} \in \text{Hom}(B_M, C_N)$ ,  $\widetilde{g} \in \text{Hom}(C_N, D_S)$ , the composition of  $\widetilde{f}$  and  $\widetilde{g}$  is defined by  $\widetilde{f} = \widetilde{g}$ .

**Definition** 1.7. Let G is an abel group,  $B_0 \in G^L$ , if for all  $x,y \in G$ , we have

$$1)B_{G}(x-y) \geqslant B_{G}(x) \wedge B_{G}(y),$$

$$2)B_{G}(0)=1$$
,

then Bo is called an F-subgroup of G or F-abel group.

Definition 1.8. The category of F-abel groups F-AG is defined by:

- 1) Objects are all F-abel groups,
- 2) For all  $B_G$ ,  $C_H \in Obj(F-AG)$ , the morphims are

Hom 
$$(B_0, C_H) = \{\tilde{f} \mid \tilde{f}: B_0 \rightarrow C_H \text{ is an F-homomorphism}\}$$

3) For all  $\tilde{f} \in \text{Hom}(B_G, C_H)$ ,  $\tilde{g} \in \text{Hom}(C_H, D_N)$ , the composition of  $\tilde{f}$  and  $\tilde{g}$  is defined by  $\tilde{f} \tilde{g} = \tilde{f} \tilde{g}$ .

**Defintion** 1. 9. Let  $\{M_i\}_{i\in I}$  is a collection of R-modules,  $B_{M_i}^i$  is an  $F_R^{\Lambda}$ -module for all  $i\in I$ ,

the fuzzy subset  $\bigoplus_{i \in I} B^i_{M_i}$  of  $\bigoplus M_i$  and fuzzy subset  $\prod_{i \in I} B^i_{M_i}$  of  $\prod_{i \in I} M_i$  are defined by

$$(\bigoplus_{i \in I} B_{M_i}^i) x = \bigwedge \{B_{M_i}^i(x_i) | i \in I\}, \text{for all } x = \langle x_i \rangle \in \bigoplus_{i \in I} M_i,$$

$$(\prod_{i \in I} B^i_{M_i}) \, x = \bigwedge \, \{B^i_{M_i}(x_i) \, | \, i \in I \} \,, \text{ for all } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in$$

 $\prod_{i \in I} B_{M_i}^i$  are called the fuzzy external direct sum and the fuzzy direct product of  $\{B_{M_i}^i\}_{i \in I}$ , respectively.

**Definition** 1.10. A sequence of  $F_R^A$ -modules and F-homomorphisms:

is said to be F-exact sequence if

$$\lim_{t\to 1} e^{-t} = \ker_{t} f_{t}$$

for every i.

**Proposition** 1. 11. [2] Let  $\{B_{M_i}^i\}_{i\in I}$  is a collection of category  $F_R^{\Lambda}$ -Mod, then  $\prod_{i\in I} B_{M_i}^i$  and  $\bigoplus_{i\in I} B_{M_i}^i$  are product and coproduct of  $\{B_{M_i}^i\}_{i\in I}$  in category  $F_R^{\Lambda}$ -Mod, respectively.

## 2. Some results of Hom functor in $F_R^{\Lambda}$ -Mod

Let  $B_M$  and  $C_N$  be  $F_R^{\Lambda}$ -submodule of M and N, respectively, for all  $\tilde{f}$ ,  $\tilde{g} \in \text{Hom}(B_M, C_N)$ , let  $\tilde{f} + \tilde{g} = f + g$  (1)

then (1) is an algebra operation of Hom  $(B_M, C_N)$ , and it is easy to prove the following Proposition 2.1.

**Proposition 2.1.** (Hom  $(B_M, C_N)$ , +) is an abel group.

Theorem 2. 2. Let  $\{B_{M_i}^i\}_{i\in I}$  is a collection of  $F_R^{\Lambda}$ -modules, then there exist the following isomorphism of group,

- 1) Hom  $(\bigoplus_{i \in I} B_{M_i}^i, B_M) \cong \prod_{i \in I} \text{Hom } (B_{M_i}^i, B_M),$
- 2) Hom  $(B_M, \prod_{i \in I} B^i_{M_i}) \cong \prod_{i \in I}$  Hom  $(B_M, B^i_{M_i})$

for all F<sub>R</sub>-module B<sub>M</sub>.

**Proof.** 1) Let 0: Hom  $(\bigoplus_{i \in I} B_{M_i}^i, B_M) \rightarrow$  Hom  $(B_{M_i}^i, B_M)$  such that

$$0(\widetilde{f}) = \{\widetilde{f}\widetilde{\pi_i}\}_{i \in I}$$

for all  $\widetilde{f} \in \text{Hom } (\bigoplus_{i \in I} B_{M_i}^i, B_M)$ , where  $\pi_i$  is ith canonical injection of  $M_i$  into  $\bigoplus_{i \in I} M_i$  (for all  $i \in I$ ). It is clear that  $\theta$  is a homomorphism of abel group. To show that  $\theta$  is surjective, let  $\{\widetilde{g_i}\}_{i \in I} \in A_i$ 

 $\prod_{i \in I}$  Hom  $(B_{M_i}^i, B_M)$ , there is an F-homomorphism

$$\tilde{\eta}: \bigoplus_{i \in I} B_{M_i}^i \rightarrow B_M$$

such that the diagram 1



diagram 1

is commutative (by Proposition 1.11), for all  $i \in I$ . Since then

$$\theta(\widetilde{f}) = \{\widetilde{\eta}\widetilde{\pi_i}\}_{i \in I} = \{\widetilde{g_i}\}_{i \in I},$$

we see that  $\theta$  is surjective. To show  $\theta$  is also injective, let  $\alpha \in \text{Ker}\theta$ , then

$$\theta(\alpha) = 0 = \{\alpha \pi_i\}_{i \in I},$$

and the diagram 2



diagram 2

is commutative (in which 0 denotes the zero R-homomorphism), for all  $j \in I$ .

Now since  $(\bigoplus_{i\in I} B_{M_i}^i, \{\widetilde{\pi}\}_{i\in I})$  is a coproduct of  $\{B_{M_i}^i\}_{i\in I}$  and since the zero F-homomorphism  $\widetilde{0}$  from  $\bigoplus_{i\in I} B_{M_i}^i$  into  $B_M$  also makes the diagram 2 commutative, by Proposition 1.11, we have  $\widetilde{\alpha} = \widetilde{0}$ , whence  $\theta$  is also injective.

2) This is the dual of 1).

Corollary 2. 3. If R is commutative then the above isomorphisms are R-module isomorphisms.

In fact, for all  $\tilde{f} \in \text{Hom } (B_M, C_N), r \in R, \text{Let}$ :

$$r = rf$$

It is clear that  $Hom(B_M, C_N)$  is a left R-module, hence we can prove that the isomorphisms of abel group in Theorem 2. 2 is left R-module isomorphisms.

Corollary 2. 4. If I is finite, then

1) Hom 
$$(\bigoplus_{i \geq 1} B_{M_i}^i, B_M) \cong \bigoplus_{i \geq 1} \text{Hom } (B_{M_i}^i, B_M),$$

2) Hom 
$$(B_M, \bigoplus_{i \in I} B_{M_i}^i) \cong \bigoplus_{i \in I} \text{Hom } (B_M, B_{M_i}^i).$$

Let  $B_{M_1}^1$ ,  $B_{M_2}^2$  are two  $F_R^{\Lambda}$ -module,  $f \in \text{Hom}(B_{M_1}^1, B_{M_2}^2)$ , if  $B_M$  is an arbitrary  $F_R^{\Lambda}$ -module, then we can define homomorphism of abel group

$$\widetilde{f}_*$$
: Hom  $(B_M, B_{M_1}^1) \rightarrow$  Hom  $(B_M, B_{M_2}^2)$ ,

by the assignment

$$\tilde{f}_{\bullet}: \tilde{\theta} \rightarrow \tilde{f}_{\bullet}(\theta) = \tilde{f}_{\theta} = \tilde{f}_{\theta},$$

we say that f. is induced by f.

Simillarly, we can define homomorphism of abel group

$$\widetilde{f}_{\bullet}$$
: Hom  $(B_{M_1}^2, B_M) \rightarrow \text{Hom } (B_{M_1}^1, B_M)$ 

by the assignment

$$\tilde{f}^*: \tilde{\theta} \rightarrow \tilde{f}^*(\tilde{\theta}) = \tilde{\theta}\tilde{f} = \tilde{\theta}f,$$

we also say that  $\tilde{f}$  is induced by  $\tilde{f}$ .

Theorem 2. 5. Let  $B_{M_1}^1$ ,  $B_{M_2}^2$ ,  $B_{M_3}^3$  are  $F_R^A$ -module,  $\widetilde{f}$ ,  $\widetilde{h} \in \text{Hom } (B_{M_1}^1, B_{M_2}^2)$ ,  $\widetilde{g} \in \text{Hom } (B_{M_2}^2, B_{M_3}^3)$ , then we have

$$(1)(\widetilde{g}\widetilde{f})_* = \widetilde{g_*f_*}, (2)(\widetilde{g}\widetilde{f})^* = \widetilde{f}^*\widetilde{g}^*,$$

$$(3)(\widetilde{f}+\widetilde{h}) \cdot = \widetilde{f} \cdot + \widetilde{h} \cdot , (4)(\widetilde{f}+\widetilde{h}) \cdot = \widetilde{f} \cdot + \widetilde{h} \cdot .$$

Proof. The proof is easy, and hence omitted.

In the theory of R-module, it is well-known that:

1) If  $0 \rightarrow M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3$  is any exact sequence of R-modules, M is an R-module, then the following sequence

$$0 \rightarrow \text{Hom } (M, M_1) \xrightarrow{f_*} \text{Hom } (M, M_2) \xrightarrow{g_*} \text{Hom } (M_1, M_3)$$

is exact.

2) If  $M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3 \rightarrow 0$  is any exact sequence of R-modules, M is an R-module, then the following sequence

$$0 \rightarrow \text{Hom}(M_3, M) \xrightarrow{g^*} \text{Hom}(M_2, M) \xrightarrow{f^*} \text{Hom}(M_1, M)$$

is exact.

But the following examples show that these do not hold in the case of fuzziness.

**Example** Let M be a nonozero R-module, L=[0,1], and the fuzzy subring A of R and  $F_R^A$ -module  $B_M$ ,  $B_M^1$ ,  $B_M^2$ ,  $B_M^3$ , are defined by:

$$A(r) = \begin{cases} 1/8 & \text{if } r \in R \text{ and } r \neq 0, \\ 1 & \text{if } r \in R \text{ and } r = 0; \end{cases}$$

$$B_{M}(x) = \begin{cases} 1/5 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x \neq 0, \end{cases}$$

$$B_{M}^{1}(x) = \begin{cases} 1/6 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x \neq 0, \end{cases}$$

$$B_{M}^{2}(x) = \begin{cases} 1/3 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x \neq 0, \end{cases}$$

$$B_{M}^{3}(x) = \begin{cases} 1/2 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x \neq 0, \end{cases}$$

$$B_{M}^{3}(x) = \begin{cases} 1/2 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x \neq 0, \end{cases}$$

it is easy to prove that the fuzzy sequence

is an F-exact sequence of  $F_R^A$ -modules, where f is the identity map and g is the zero map on M. But the sequence  $0 \rightarrow \text{Hom } (B_M, B_M^1) \xrightarrow{\tilde{f}_*} \text{Hom } (B_M, B_M^2) \xrightarrow{\tilde{g}_*} \text{Hom} (B_M, B_{M_3}^3)$  is not exact, because  $\tilde{l} \in \text{ker } \tilde{g}_*$ , and there is no  $\tilde{\phi} \in \text{Hom } (B_M, B_M^2)$  such that  $\tilde{f}_* \tilde{\phi} = \tilde{l}_*$ , hence  $\text{ker } \tilde{g}_* \neq \text{im } \tilde{f}_*$ .

2) Let M be a nonzero R-module, the subring A of R and  $F_R^*$ -module  $B_M$ ,  $B_M^1$ ,  $B_M^2$ ,  $B_M^3$  are defined by

$$A(r) = \begin{cases} 1/8 & \text{if } r \in R \text{ and } r \neq 0, \\ 1 & \text{if } r \in R \text{ and } r = 0; \end{cases}$$

$$B_{M}(x) = \begin{cases} 1/3 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x = 0; \end{cases}$$

$$B_{M}^{1}(x) = \begin{cases} 1/4 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x = 0; \end{cases}$$

$$B_{M}^{2}(x) = \begin{cases} 1/4 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x = 0; \end{cases}$$

$$B_{M}^{3}(x) = \begin{cases} 1/2 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x = 0; \end{cases}$$
The fuzzy sequence of E^A modules.

it is easy to prove the following fuzzy sequence of F<sub>R</sub>-modules

$$B_{M}^{1} \xrightarrow{\widetilde{f}} B_{M}^{2} \xrightarrow{\widetilde{g}} B_{M}^{3} \rightarrow 0$$

is exact, where f is the zero map, g is the identity map. But the sequence 0 o Hom  $(B_M^3, B_M) \xrightarrow{g^*}$  Hom  $(B_M^2, B_M) \to$  Hom  $(B_M^1, B_M)$  is not exact, because  $1 \in \ker f^*$ , but  $1 \in \ker g^*$  so  $\ker f^* \neq \ker g^*$ .

Theoem 2.6. Let  $B_M$  be an arbitrary  $F_R^A$ -module, then

1) If  $0 \to B_{M_1}^1 \xrightarrow{\widetilde{f}} B_{M_2}^2 \xrightarrow{\widetilde{g}} B_{M_3}^3$  is an F-exact sequence of  $F_R^A$ -modules, then  $0 \to \text{Hom } (B_M, B_M^1)$   $\xrightarrow{\widetilde{f}_*} \text{Hom } (B_M, B_M^2) \xrightarrow{\widetilde{g}_*} \text{Hom}(B_M, B_M^3) \text{ is exact iff for any } \alpha \in \text{Hom}(M, M_1), \text{ if } \widetilde{f} \alpha \in \text{Ker } \widetilde{g}_*, \text{ we}$ have  $\alpha \in \text{Hom}(B_M, B_M^1)$ ,

2) If  $B_{M_1}^1 \xrightarrow{\widetilde{f}} B_{M_2}^2 \xrightarrow{\widetilde{g}} B_{M_3}^3 \to 0$  is an F-exact sequence of  $F_R^A$ -modules, then Hom  $(B_{M_3}^3, B_M)$   $\xrightarrow{\widetilde{g}_*}$  Hom  $(B_{M_2}^2, B_M) \xrightarrow{\widetilde{f}_*}$  Hom  $(B_{M_1}^1, B_M) \xrightarrow{0} 0$  is exact iff for any  $\beta \in \text{Hom}(M_3, M)$ , if  $g\beta \in \text{ker } \widetilde{f}_*^*$ , we have  $\widetilde{\beta} \in \text{Hom } (B_{M_3}^3, B_M)$ .

Proof 1) Necessity. If 0 o Hom  $(B_M, B_{M_1}^1) \xrightarrow{\widetilde{f_*}} Hom (B_M, B_{M_2}^2) \xrightarrow{g_*} Hom (B_M, B_{M_3}^3)$  is exact sequence,  $\alpha \in Hom (M, M_1)$  and  $\widetilde{f_\alpha} \in \ker g_*$ . Since  $\ker g_* = \operatorname{im} f_*$ , then there is  $\widetilde{h} \in Hom(B_M, B_{M_1}^1)$  such that  $\widetilde{f_\alpha} = \widetilde{f_*} \widetilde{h}$ , so  $\widetilde{f_*} \widetilde{\alpha} = \widetilde{f_*} \widetilde{h}$ , but  $\widetilde{f_*}$  is injective, hence  $\widetilde{\alpha} = \widetilde{h}$ , i. e.  $\widetilde{\alpha} \in Hom(B_M, B_{M_1}^1)$ .

Sufficiency. Becarse f is injective, it is easy to see that f is injective, too. To see that im f = ker g , for any  $\phi \in \ker g$  , we have  $g \cdot \phi = 0$ , so  $g \cdot \phi = 0$ , hence  $g \cdot \phi = 0$ . Now there is  $\alpha \in \operatorname{Hom}(M, M_1)$  such that  $\phi = f \cdot \alpha$ , i.e.  $f \cdot \alpha = \phi \in \ker g$  , whence  $\alpha \in \operatorname{Hom}(B_M, B_{M_1}^1)$ , consequently  $\phi = f \cdot \alpha = f \cdot \alpha \in \operatorname{Im}(f \cdot \alpha)$  i.e.  $\ker g \cdot \phi = f \cdot \alpha = f \cdot \alpha \in \operatorname{Im}(f \cdot \alpha)$  and  $f \cdot \phi = f \cdot \alpha \in \operatorname{Im}(g \cdot \alpha)$  such that  $f \cdot \alpha = \psi$ , so  $g \cdot (f \cdot \alpha) = g \cdot (f \cdot \alpha) = g \cdot (f \cdot \alpha) = g \cdot (f \cdot \alpha)$  i.e.  $\operatorname{Im}(f \cdot \alpha) = g \cdot (f \cdot \alpha)$  hence

ker g. = im f.

2) The proof is similar to the proof of 1).

#### Reference

- [1] Zhao Jianli, Shi Kaiquan, Yu Mingshan, Fuzzy Modules Over Fuzzy Rings, The Journal of Fuzzy Mathematics, 3(1993), 531-539.
- [2] Zhao Jianli, F<sup>A</sup>-modules and F<sup>A</sup>-modules categories, The Journal of Fuzzy Mathematiics, (to appear)
- [3] Zhao Jianli, Fuzzy homological theory in  $F_R^A$ -modules (I), The Journal of Fuzzy Mathematics (to appear).
- [4] Zhao Jianli, Fuzzy Categories of Sets, Fuzzy Homomorphisms of Modules and Fuzzy Categories of Modules, The Journal of Fuzzy Mathematics, 2(1995), 261-271.
- [5] T. S. Blyth, Module theory-An approach to linear Algebra, Clarandon, Oxford 1977.
- [6] F. Kasch, Modules and Rings, Acadmic Press INC, 1982.