Some Results of Hom Functor in Categories of F_R^{Λ} -modules #### Zhao Jianli Department of Mathematics, Liaocheng Teachers College, Shandong, 252059, P. R. China Abstract In this paper, we are to discuss the properties of Hom functor in categories of F_R^{Λ} -modules and give the some difference between the Hom functor in categories of F_R^{Λ} -modules and the Hom functor in categories of R-modules **Keywords** F_R^* -module, F-homomorphism, category of F_R^* -modules, category of F-abel groups, F-exact sequence. ### 1. Introduction [1-3] established the basic knowlege of theory of F_R^{Λ} -module, and provied the idea researching fuzzy ring from outside. In this paper, we will carry on the work of [1-3], study the properties of Hom functor in categories of F_R^{Λ} -modules. Let X be a nonempty set, L be a complete distributive lattice (with 0 and 1), a fuzzy subset A on X is characterised by a mapping $A: X \rightarrow L$. X^L denotes the set of whole fuzzy subset of X. In this paper, R is a ring with identity $1 \neq 0$ and module which involved is an unitary left R-module. **Definition** 1.1. Let R is a ring, $A \in \mathbb{R}^L$, if for all $x,y \in \mathbb{R}$, we have: 1) $A(x-y) \geqslant A(x) \land A(y)$; $2)A(xy) \geqslant A(x) \land A(y);$ 3)A(0)=1, then A is called a fuzzy subring of R. **Definition** 1. 2. [1] Let M be a left R-module, A a fuzzy subirng of R, $B_M \in M^L$, if for all $x,y \in M, r \in R$, we have $1)B_{M}(x-y) \geqslant B_{M}(x) \wedge B_{M}(y)$ $$2)B_{M}(0)=1$$ $$3)B_{M}(rx) \geqslant A(r) \wedge B_{M}(x)$$ then B_M is called an F_R^{Λ} -submodule (or F_R^{Λ} -module). **Definition** 1. 3. Let N be a left R-submodule of M, B_M and C_N be F_R^{Λ} -submodule of M and N respectively, if for all $x \in \mathbb{N}$, we have $$B_M(x) \geqslant C_N(x)$$ then C_N is called an F-submodule of B_M. **Definition** 1. 4. Let M and N be two R-modules, $f: M \rightarrow N$ be an R-homomorphism, B_M be an F_R^A -submodule of M, F_R^A -submodule $f(B_M)$ of N is defined by $$\widetilde{f}(B_{M})(y) = \begin{cases} \bigvee \{B_{M}(x) \mid x \in M, f(x) = y\}, & \text{if } f^{-1} \neq \emptyset, \\ 0, & \text{is } f^{-1}(y) = \emptyset, \end{cases}$$ for all $y \in N$. **Definition** 1. 5. Let M and N be two left R-module, $f:M \to N$ be an R-homomorphism, B_M and C_N be F_R^{Λ} -submodule of M and N, respectively, if $\widetilde{f}(B_M) \leqslant C_N$, then \widetilde{f} is an F-homomorphism from B_M into C_N , writes by $\widetilde{f}: B_M \to C_N$, **Definition** 1.6 The category of F_R^A -modules F_R^A -Mod is defined by: - 1) Objects are all Fr-modules. - 2) For all B_M , $C_N \in Obj$ $(F_R^A Mod)$, the set of morphisms is Hom $(B_M, C_N) = \{ \widetilde{f} \mid \widetilde{f} \text{ is an arbityary F-homomorphism from } B_M \text{ into } C_N \},$ 3) For all $\widetilde{f} \in \text{Hom}(B_M, C_N)$, $\widetilde{g} \in \text{Hom}(C_N, D_S)$, the composition of \widetilde{f} and \widetilde{g} is defined by $\widetilde{f} = \widetilde{g}$. **Definition** 1.7. Let G is an abel group, $B_0 \in G^L$, if for all $x,y \in G$, we have $$1)B_{G}(x-y) \geqslant B_{G}(x) \wedge B_{G}(y),$$ $$2)B_{G}(0)=1$$, then Bo is called an F-subgroup of G or F-abel group. Definition 1.8. The category of F-abel groups F-AG is defined by: - 1) Objects are all F-abel groups, - 2) For all B_G , $C_H \in Obj(F-AG)$, the morphims are Hom $$(B_0, C_H) = \{\tilde{f} \mid \tilde{f}: B_0 \rightarrow C_H \text{ is an F-homomorphism}\}$$ 3) For all $\tilde{f} \in \text{Hom}(B_G, C_H)$, $\tilde{g} \in \text{Hom}(C_H, D_N)$, the composition of \tilde{f} and \tilde{g} is defined by $\tilde{f} \tilde{g} = \tilde{f} \tilde{g}$. **Defintion** 1. 9. Let $\{M_i\}_{i\in I}$ is a collection of R-modules, $B_{M_i}^i$ is an F_R^{Λ} -module for all $i\in I$, the fuzzy subset $\bigoplus_{i \in I} B^i_{M_i}$ of $\bigoplus M_i$ and fuzzy subset $\prod_{i \in I} B^i_{M_i}$ of $\prod_{i \in I} M_i$ are defined by $$(\bigoplus_{i \in I} B_{M_i}^i) x = \bigwedge \{B_{M_i}^i(x_i) | i \in I\}, \text{for all } x = \langle x_i \rangle \in \bigoplus_{i \in I} M_i,$$ $$(\prod_{i \in I} B^i_{M_i}) \, x = \bigwedge \, \{B^i_{M_i}(x_i) \, | \, i \in I \} \,, \text{ for all } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \bigoplus_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} B^i_{M_i} \, \text{ and } \, x = \langle x_i \rangle \in \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in I} M_i \,, \text{ respectively.} \quad \text{Then } \prod_{i \in$$ $\prod_{i \in I} B_{M_i}^i$ are called the fuzzy external direct sum and the fuzzy direct product of $\{B_{M_i}^i\}_{i \in I}$, respectively. **Definition** 1.10. A sequence of F_R^A -modules and F-homomorphisms: is said to be F-exact sequence if $$\lim_{t\to 1} e^{-t} = \ker_{t} f_{t}$$ for every i. **Proposition** 1. 11. [2] Let $\{B_{M_i}^i\}_{i\in I}$ is a collection of category F_R^{Λ} -Mod, then $\prod_{i\in I} B_{M_i}^i$ and $\bigoplus_{i\in I} B_{M_i}^i$ are product and coproduct of $\{B_{M_i}^i\}_{i\in I}$ in category F_R^{Λ} -Mod, respectively. ## 2. Some results of Hom functor in F_R^{Λ} -Mod Let B_M and C_N be F_R^{Λ} -submodule of M and N, respectively, for all \tilde{f} , $\tilde{g} \in \text{Hom}(B_M, C_N)$, let $\tilde{f} + \tilde{g} = f + g$ (1) then (1) is an algebra operation of Hom (B_M, C_N) , and it is easy to prove the following Proposition 2.1. **Proposition 2.1.** (Hom (B_M, C_N) , +) is an abel group. Theorem 2. 2. Let $\{B_{M_i}^i\}_{i\in I}$ is a collection of F_R^{Λ} -modules, then there exist the following isomorphism of group, - 1) Hom $(\bigoplus_{i \in I} B_{M_i}^i, B_M) \cong \prod_{i \in I} \text{Hom } (B_{M_i}^i, B_M),$ - 2) Hom $(B_M, \prod_{i \in I} B^i_{M_i}) \cong \prod_{i \in I}$ Hom $(B_M, B^i_{M_i})$ for all F_R-module B_M. **Proof.** 1) Let 0: Hom $(\bigoplus_{i \in I} B_{M_i}^i, B_M) \rightarrow$ Hom $(B_{M_i}^i, B_M)$ such that $$0(\widetilde{f}) = \{\widetilde{f}\widetilde{\pi_i}\}_{i \in I}$$ for all $\widetilde{f} \in \text{Hom } (\bigoplus_{i \in I} B_{M_i}^i, B_M)$, where π_i is ith canonical injection of M_i into $\bigoplus_{i \in I} M_i$ (for all $i \in I$). It is clear that θ is a homomorphism of abel group. To show that θ is surjective, let $\{\widetilde{g_i}\}_{i \in I} \in A_i$ $\prod_{i \in I}$ Hom $(B_{M_i}^i, B_M)$, there is an F-homomorphism $$\tilde{\eta}: \bigoplus_{i \in I} B_{M_i}^i \rightarrow B_M$$ such that the diagram 1 diagram 1 is commutative (by Proposition 1.11), for all $i \in I$. Since then $$\theta(\widetilde{f}) = \{\widetilde{\eta}\widetilde{\pi_i}\}_{i \in I} = \{\widetilde{g_i}\}_{i \in I},$$ we see that θ is surjective. To show θ is also injective, let $\alpha \in \text{Ker}\theta$, then $$\theta(\alpha) = 0 = \{\alpha \pi_i\}_{i \in I},$$ and the diagram 2 diagram 2 is commutative (in which 0 denotes the zero R-homomorphism), for all $j \in I$. Now since $(\bigoplus_{i\in I} B_{M_i}^i, \{\widetilde{\pi}\}_{i\in I})$ is a coproduct of $\{B_{M_i}^i\}_{i\in I}$ and since the zero F-homomorphism $\widetilde{0}$ from $\bigoplus_{i\in I} B_{M_i}^i$ into B_M also makes the diagram 2 commutative, by Proposition 1.11, we have $\widetilde{\alpha} = \widetilde{0}$, whence θ is also injective. 2) This is the dual of 1). Corollary 2. 3. If R is commutative then the above isomorphisms are R-module isomorphisms. In fact, for all $\tilde{f} \in \text{Hom } (B_M, C_N), r \in R, \text{Let}$: $$r = rf$$ It is clear that $Hom(B_M, C_N)$ is a left R-module, hence we can prove that the isomorphisms of abel group in Theorem 2. 2 is left R-module isomorphisms. Corollary 2. 4. If I is finite, then 1) Hom $$(\bigoplus_{i \geq 1} B_{M_i}^i, B_M) \cong \bigoplus_{i \geq 1} \text{Hom } (B_{M_i}^i, B_M),$$ 2) Hom $$(B_M, \bigoplus_{i \in I} B_{M_i}^i) \cong \bigoplus_{i \in I} \text{Hom } (B_M, B_{M_i}^i).$$ Let $B_{M_1}^1$, $B_{M_2}^2$ are two F_R^{Λ} -module, $f \in \text{Hom}(B_{M_1}^1, B_{M_2}^2)$, if B_M is an arbitrary F_R^{Λ} -module, then we can define homomorphism of abel group $$\widetilde{f}_*$$: Hom $(B_M, B_{M_1}^1) \rightarrow$ Hom $(B_M, B_{M_2}^2)$, by the assignment $$\tilde{f}_{\bullet}: \tilde{\theta} \rightarrow \tilde{f}_{\bullet}(\theta) = \tilde{f}_{\theta} = \tilde{f}_{\theta},$$ we say that f. is induced by f. Simillarly, we can define homomorphism of abel group $$\widetilde{f}_{\bullet}$$: Hom $(B_{M_1}^2, B_M) \rightarrow \text{Hom } (B_{M_1}^1, B_M)$ by the assignment $$\tilde{f}^*: \tilde{\theta} \rightarrow \tilde{f}^*(\tilde{\theta}) = \tilde{\theta}\tilde{f} = \tilde{\theta}f,$$ we also say that \tilde{f} is induced by \tilde{f} . Theorem 2. 5. Let $B_{M_1}^1$, $B_{M_2}^2$, $B_{M_3}^3$ are F_R^A -module, \widetilde{f} , $\widetilde{h} \in \text{Hom } (B_{M_1}^1, B_{M_2}^2)$, $\widetilde{g} \in \text{Hom } (B_{M_2}^2, B_{M_3}^3)$, then we have $$(1)(\widetilde{g}\widetilde{f})_* = \widetilde{g_*f_*}, (2)(\widetilde{g}\widetilde{f})^* = \widetilde{f}^*\widetilde{g}^*,$$ $$(3)(\widetilde{f}+\widetilde{h}) \cdot = \widetilde{f} \cdot + \widetilde{h} \cdot , (4)(\widetilde{f}+\widetilde{h}) \cdot = \widetilde{f} \cdot + \widetilde{h} \cdot .$$ Proof. The proof is easy, and hence omitted. In the theory of R-module, it is well-known that: 1) If $0 \rightarrow M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3$ is any exact sequence of R-modules, M is an R-module, then the following sequence $$0 \rightarrow \text{Hom } (M, M_1) \xrightarrow{f_*} \text{Hom } (M, M_2) \xrightarrow{g_*} \text{Hom } (M_1, M_3)$$ is exact. 2) If $M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3 \rightarrow 0$ is any exact sequence of R-modules, M is an R-module, then the following sequence $$0 \rightarrow \text{Hom}(M_3, M) \xrightarrow{g^*} \text{Hom}(M_2, M) \xrightarrow{f^*} \text{Hom}(M_1, M)$$ is exact. But the following examples show that these do not hold in the case of fuzziness. **Example** Let M be a nonozero R-module, L=[0,1], and the fuzzy subring A of R and F_R^A -module B_M , B_M^1 , B_M^2 , B_M^3 , are defined by: $$A(r) = \begin{cases} 1/8 & \text{if } r \in R \text{ and } r \neq 0, \\ 1 & \text{if } r \in R \text{ and } r = 0; \end{cases}$$ $$B_{M}(x) = \begin{cases} 1/5 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x \neq 0, \end{cases}$$ $$B_{M}^{1}(x) = \begin{cases} 1/6 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x \neq 0, \end{cases}$$ $$B_{M}^{2}(x) = \begin{cases} 1/3 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x \neq 0, \end{cases}$$ $$B_{M}^{3}(x) = \begin{cases} 1/2 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x \neq 0, \end{cases}$$ $$B_{M}^{3}(x) = \begin{cases} 1/2 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x \neq 0, \end{cases}$$ it is easy to prove that the fuzzy sequence is an F-exact sequence of F_R^A -modules, where f is the identity map and g is the zero map on M. But the sequence $0 \rightarrow \text{Hom } (B_M, B_M^1) \xrightarrow{\tilde{f}_*} \text{Hom } (B_M, B_M^2) \xrightarrow{\tilde{g}_*} \text{Hom} (B_M, B_{M_3}^3)$ is not exact, because $\tilde{l} \in \text{ker } \tilde{g}_*$, and there is no $\tilde{\phi} \in \text{Hom } (B_M, B_M^2)$ such that $\tilde{f}_* \tilde{\phi} = \tilde{l}_*$, hence $\text{ker } \tilde{g}_* \neq \text{im } \tilde{f}_*$. 2) Let M be a nonzero R-module, the subring A of R and F_R^* -module B_M , B_M^1 , B_M^2 , B_M^3 are defined by $$A(r) = \begin{cases} 1/8 & \text{if } r \in R \text{ and } r \neq 0, \\ 1 & \text{if } r \in R \text{ and } r = 0; \end{cases}$$ $$B_{M}(x) = \begin{cases} 1/3 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x = 0; \end{cases}$$ $$B_{M}^{1}(x) = \begin{cases} 1/4 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x = 0; \end{cases}$$ $$B_{M}^{2}(x) = \begin{cases} 1/4 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x = 0; \end{cases}$$ $$B_{M}^{3}(x) = \begin{cases} 1/2 & \text{if } x \in M \text{ and } x \neq 0, \\ 1 & \text{if } x \in M \text{ and } x = 0; \end{cases}$$ The fuzzy sequence of E^A modules. it is easy to prove the following fuzzy sequence of F_R-modules $$B_{M}^{1} \xrightarrow{\widetilde{f}} B_{M}^{2} \xrightarrow{\widetilde{g}} B_{M}^{3} \rightarrow 0$$ is exact, where f is the zero map, g is the identity map. But the sequence 0 o Hom $(B_M^3, B_M) \xrightarrow{g^*}$ Hom $(B_M^2, B_M) \to$ Hom (B_M^1, B_M) is not exact, because $1 \in \ker f^*$, but $1 \in \ker g^*$ so $\ker f^* \neq \ker g^*$. Theoem 2.6. Let B_M be an arbitrary F_R^A -module, then 1) If $0 \to B_{M_1}^1 \xrightarrow{\widetilde{f}} B_{M_2}^2 \xrightarrow{\widetilde{g}} B_{M_3}^3$ is an F-exact sequence of F_R^A -modules, then $0 \to \text{Hom } (B_M, B_M^1)$ $\xrightarrow{\widetilde{f}_*} \text{Hom } (B_M, B_M^2) \xrightarrow{\widetilde{g}_*} \text{Hom}(B_M, B_M^3) \text{ is exact iff for any } \alpha \in \text{Hom}(M, M_1), \text{ if } \widetilde{f} \alpha \in \text{Ker } \widetilde{g}_*, \text{ we}$ have $\alpha \in \text{Hom}(B_M, B_M^1)$, 2) If $B_{M_1}^1 \xrightarrow{\widetilde{f}} B_{M_2}^2 \xrightarrow{\widetilde{g}} B_{M_3}^3 \to 0$ is an F-exact sequence of F_R^A -modules, then Hom $(B_{M_3}^3, B_M)$ $\xrightarrow{\widetilde{g}_*}$ Hom $(B_{M_2}^2, B_M) \xrightarrow{\widetilde{f}_*}$ Hom $(B_{M_1}^1, B_M) \xrightarrow{0} 0$ is exact iff for any $\beta \in \text{Hom}(M_3, M)$, if $g\beta \in \text{ker } \widetilde{f}_*^*$, we have $\widetilde{\beta} \in \text{Hom } (B_{M_3}^3, B_M)$. Proof 1) Necessity. If 0 o Hom $(B_M, B_{M_1}^1) \xrightarrow{\widetilde{f_*}} Hom (B_M, B_{M_2}^2) \xrightarrow{g_*} Hom (B_M, B_{M_3}^3)$ is exact sequence, $\alpha \in Hom (M, M_1)$ and $\widetilde{f_\alpha} \in \ker g_*$. Since $\ker g_* = \operatorname{im} f_*$, then there is $\widetilde{h} \in Hom(B_M, B_{M_1}^1)$ such that $\widetilde{f_\alpha} = \widetilde{f_*} \widetilde{h}$, so $\widetilde{f_*} \widetilde{\alpha} = \widetilde{f_*} \widetilde{h}$, but $\widetilde{f_*}$ is injective, hence $\widetilde{\alpha} = \widetilde{h}$, i. e. $\widetilde{\alpha} \in Hom(B_M, B_{M_1}^1)$. Sufficiency. Becarse f is injective, it is easy to see that f is injective, too. To see that im f = ker g , for any $\phi \in \ker g$, we have $g \cdot \phi = 0$, so $g \cdot \phi = 0$, hence $g \cdot \phi = 0$. Now there is $\alpha \in \operatorname{Hom}(M, M_1)$ such that $\phi = f \cdot \alpha$, i.e. $f \cdot \alpha = \phi \in \ker g$, whence $\alpha \in \operatorname{Hom}(B_M, B_{M_1}^1)$, consequently $\phi = f \cdot \alpha = f \cdot \alpha \in \operatorname{Im}(f \cdot \alpha)$ i.e. $\ker g \cdot \phi = f \cdot \alpha = f \cdot \alpha \in \operatorname{Im}(f \cdot \alpha)$ and $f \cdot \phi = f \cdot \alpha \in \operatorname{Im}(g \cdot \alpha)$ such that $f \cdot \alpha = \psi$, so $g \cdot (f \cdot \alpha) = g \cdot (f \cdot \alpha) = g \cdot (f \cdot \alpha) = g \cdot (f \cdot \alpha)$ i.e. $\operatorname{Im}(f \cdot \alpha) = g \cdot (f \cdot \alpha)$ hence ker g. = im f. 2) The proof is similar to the proof of 1). #### Reference - [1] Zhao Jianli, Shi Kaiquan, Yu Mingshan, Fuzzy Modules Over Fuzzy Rings, The Journal of Fuzzy Mathematics, 3(1993), 531-539. - [2] Zhao Jianli, F^A-modules and F^A-modules categories, The Journal of Fuzzy Mathematiics, (to appear) - [3] Zhao Jianli, Fuzzy homological theory in F_R^A -modules (I), The Journal of Fuzzy Mathematics (to appear). - [4] Zhao Jianli, Fuzzy Categories of Sets, Fuzzy Homomorphisms of Modules and Fuzzy Categories of Modules, The Journal of Fuzzy Mathematics, 2(1995), 261-271. - [5] T. S. Blyth, Module theory-An approach to linear Algebra, Clarandon, Oxford 1977. - [6] F. Kasch, Modules and Rings, Acadmic Press INC, 1982.