The Initial Objects, Terminal Objects, Equalizers and Intersections on Categories of F_R^{Λ} -modules.

Zhao Jianli

Department of Mathematics, Liaocheng Teachers College, Shandong, 252059, P. R. China

Abstract: In this paper, we show that the category of F_R^{Λ} — modules is a top category, we obtain that the category of F_R^{Λ} -module has initial objects, terminal objects, equalizers and intersections.

Keywords: F_R^A -module, F — homomorphism, category of F_R^A -module, initial object, terminal object, top category, equalizer, intersection.

1 Introduction

[1],[2],[3] introduce the concepts of F_R^{Λ} —module and the category of F_R^{Λ} —modules, and discuss the properties of them. In this paper, we show that the category of F_R^{Λ} —modules is a top category, and we obtain that the category of F_R^{Λ} —module has initial objects, terminal objects, equalizers and intersections.

Let X be a nonempty set, L be a complete distributive lattice (with 0 and 1), A fuzzy subset A on X is characterised by a mapping $A: X \rightarrow L$. X^L denotes the set of whole fuzzy subset of X. In this paper R is a ring with identity $1 \neq 0$ and module which involved is an unitary left R- module.

Definition 1. 1. [1] Let M be a left R-module, A a fuzzy subring of R and A(0) = 1, $B_M \in M^L$, if for all $x, y \in M$, $r \in R$, we have

- $1)B_{M}(x-y)\geqslant B_{M}(x) \wedge B_{M}(y)$,
- $2)B_{M}(0)=1$,
- $3)B_{M}(rx) \geqslant A(r) \wedge B(x)$

then B_M is called an F_R^{Λ} -submodule (or F_R^{Λ} -module).

Definition 1.2. Let M and N be two R-modules, $f:M \longrightarrow N$ be an R-homomorphism,

 B_M be an F_R^A —submodule of M, $\widetilde{f}(B_M)$ is defined by

$$\stackrel{\sim}{f}(B_{M})(y) = \begin{cases}
V \{B_{M}(x) | x \in M, f(x) = y\}, & \text{if } f^{-1}(y) \neq \emptyset, \\
0, & \text{if } f^{-1}(y) = \emptyset,
\end{cases}$$

for all $y \in N$.

Definition 1. 3. Let M and N be two left R—module, $f:M \longrightarrow N$ be an R—homomorphism, B_M and C_N be F_R^{Λ} -submodule of M and N, respectively, if $\widetilde{f}(B_M) \leqslant C_N$, then \widetilde{f} is called an F—homomorphism from B_M into C_N , writes $\widetilde{f}: B_M \longrightarrow C_N$.

Definition 1.4. The category of F_R^{Λ} -modules F_R^{Λ} -Mod is defined by:

- 1) Objects are all Fa-modules.
- 2) For all B_M , $C_N \in Obj (F_R^A Mod)$, the set of morphisms is

Hom $(B_M, C_N) = \{\widetilde{f} \mid \widetilde{f} \text{ is an arbitrary } F-\text{homomorphism from } B_M \text{ into } C_N \}$,

3) For all $\widetilde{f} \in \text{Hom}(B_M, C_N)$, $\widetilde{g} \in \text{Hom}(C_N, D_S)$, the composition of \widetilde{f} and \widetilde{g} is defined by $\widetilde{f} \widetilde{g} = \widetilde{fg}$.

Let R-Mod denotes the category of left R-modules.

Definition 1.5. Let $B_M, C_N \in Obj(F_R^{\wedge} - mod)$, if $N \subseteq M$ and $B_M(x) \geqslant C_N(x)$, for all $x \in N$, then C_N is called the subobject of the object B_M .

2. Initial and terminal objects and top properties of \mathbf{F}_{R}^{Λ} —modules

Let M be a left R-module, A be a fuzzy subring of R, two F_R^* -module of M are defined by

$$0_{M}: M \longrightarrow L$$
, $0_{M}(m) = \begin{cases} 0, & \text{if } m \neq 0, m \in M, \\ 1, & \text{if } m = 0, m \in M, \end{cases}$

$$1_{M}: M \longrightarrow L$$
, $1_{M}(m) = 1, \forall m \in M$.

Consequently, the diagram (1) and diagram (2) are admissible.

Hence the objects 0_M in category F_R^A —Mod is the initial objects of the category F_R^A —Mod and the objects $1_{\{0\}}$ is the terminal objects of the category F_R^A —Mod, therefore we have the following Proposition 2.1.

Proposition 2.1. The category F_R^A —Mod has initial objects and terminal objects. By Proposition 2.1, we have the following Proposition 2.2.

Proposition 2. 2. The category F_R^A —Mod has zero objects.

Theorem 2. 3. The category F_R^{Λ} —Mod is additive category, but it is not abel category.

Proof. By [2], [3] and Proposition 2. 2, the category F_R^{Λ} —Mod has products, coproducts, kernels and cokernels and zero objects, hence the category F_R^{Λ} —Mod is additive category.

Let $\widetilde{g}: C_N \longrightarrow B_M$ be a subobject of B_M , if \widetilde{g} is normal, then $C_N = f^{-1}(B_M)$. Hence for $M \neq 0$, $\widetilde{1}: 0_M \longrightarrow 1_M$ is a subobjects of 1_M which is not a Kernel, therefore F_R^A -Mod is not an abel category.

Proposition 2. 4. Let M be a left R—module, the set $\Omega_L(M) = \{B_M \mid B_M \text{ is an } F_R^{\Lambda} - \text{module of } M\}$ is a complete lattice under the following order relation:

$$B_M \leq C_N \text{ iff } B_M(x) \leq C_M(x), \text{ for all } x \in M.$$

Proof. Let $\{B_M^i | i \in I\} \subseteq \Omega_L(M)$

are the inf and sub of the collection $\{B_M^i | i \in I\}$, respectively.

Theorem 2.5. The category F_R^A -Mod is a top category over R-Mod. **Proof.** The proof is similar to Theorem 3.4 of [4].

3 Equalizers and intersections

Theorem 3. 1 The category F_R^{Λ} -Mod has equalizers.

Proof. Let $B_M, C_N \in Obj$ (F_R^A-Mod) , and $\widetilde{f_1}, \widetilde{f_2}: B_M \longrightarrow C_N$ be two morphisms in F_R^A-Mod . So we have two R-homomorphisms $f_1, f_2: M \longrightarrow N$ in R—Mod. But the category R-Mod has equalizers and let the equalizer of f, g in R-Mod be $i_k: K \longrightarrow M$, where

$$K = \{x | f_1(x) = f_2(x), x \in M\},\$$

and i_k is the inclusion map. Eviently, K is an R-submodule of M. We define an F_R^{Λ} -module of K,

$$D_K: K \longrightarrow L, D_K(x) = B_M(x), \forall x \in K,$$

since

$$D_K(x) \leqslant B_M(i_k(x))$$
, for all $x \in K$,

consequently, $i_k: D_K \longrightarrow B_M$ is an F-homomorphism. By the above construction we get that the following diagram holds in F_R^{Λ} -Mod.

$$D_{K} \xrightarrow{\widetilde{i}_{k}} B_{M} \xrightarrow{\widetilde{f}_{1}} H_{N}$$

$$\qquad \qquad ||$$

$$H_{N} \xleftarrow{\widetilde{f}_{2}} B_{M} \xleftarrow{\widetilde{i}_{k}} D_{K}$$

Let there is an F-homomorphism $g: C'_{K'} \longrightarrow B_{M}$ such that the following diagram holds in $F_{K'}^{A}$ -Mod.

$$D_{K}^{l} \xrightarrow{\widetilde{g}} B_{M} \xrightarrow{\widetilde{f}_{1}} C_{N}$$

$$C_{N} \xrightarrow{\widetilde{f}_{2}} B_{N} \xrightarrow{\widetilde{g}} D_{N}^{l}$$

So

$$K' \xrightarrow{g} M \xrightarrow{f_1} N$$

$$||$$

$$N \xrightarrow{f_2} M \xrightarrow{g} K'$$

holds in R-Mod. Since category R-Mod has equalizers, from the universal property there exists a unique R-homomorphism $k^!: K^! \longrightarrow K$ in R-Mod such that $i_k k^! = g$. Since we have the following diagram (3)

diagram(3)

is communtive. Therefore

$$D'_{K'}(x) \leqslant B_{M}(x) \leqslant B_{M}(i_{k}k(x))$$

$$= B_{M}i_{k}(k(x)) = D_{k}(x),$$

then $\widetilde{k'}$ is an F-homomorphism. Consequently, the following diagram holds

$$D_{K}^{'} \xrightarrow{\widetilde{k}} D_{K} \xrightarrow{\widetilde{i_{k}}} B_{M}$$

$$\vdots$$

$$B_{M} \xleftarrow{\widetilde{g}} D_{K}^{'}$$

Hence the pair $(D_K, \widetilde{i_k})$ is the equalizer of the pair of F—homomorphisms $\widetilde{f_1}$ and $\widetilde{f_2}$ in category F_R^A -Mod.

Theorem 3.2. The category F_R^A —Mod has finite intersections.

Proof. Let $\{B_{M_i}^l | i \in 1, 2, \dots n\}$ be the family of subobjects of the object B_M in F_R^A -Mod.

Let $M' = \bigcap_{i=1}^{n} M_i$, we define fuzzy subset $B'_{M'}$ of M',

$$B'_{a'} \cdot M' \longrightarrow I$$

such that

$$B_{M}^{i}(x) = \bigwedge \{B_{M}^{i}(x) | i=1,\dots,n\}, \text{ for all } x \in M^{i},$$

it is easy to prove $B'_{M'} \in Obj(F_{R}^{\Lambda}-Mod)$.

For all $i, g_i: M_i \longrightarrow M$ are inclusion map, because

$$B_{M_i}^i(x) {\leqslant} B_M(x)(f_i(x))$$
 , for any $x {\in} M_i$, $i {=} 1, \cdots, n$

so for all $i=1,2,\dots,g_i:B_{M_i}^I\longrightarrow B_M$ are F-homomorphism, let $f:D_H\longrightarrow B_M$ be an F-homomorphism which is foctored through each subobject $B_{M_i}^I$, that is, for all $i\in I$, the following diagram holds.

$$\begin{array}{ccc} D_{\mathsf{H}} & \xrightarrow{\widetilde{f}_{\mathsf{I}}} B_{\mathsf{M}_{\mathsf{I}}} & \xrightarrow{\widetilde{g}_{\mathsf{I}}} B_{\mathsf{M}} \\ & & & || \\ & B_{\mathsf{M}} & \xleftarrow{\widetilde{f}} D_{\mathsf{H}} \end{array}$$

Hence

$$H \xrightarrow{f_i} M_i \xrightarrow{g_i} M$$

$$||$$

$$M \xrightarrow{f} H$$

holds, for $i=1,2,\cdots n$. By the universal properties of intersection, there exists R—homomorphism $f':H\longrightarrow M'$ in R—Mod such that

$$H \xrightarrow{f'} M' \xrightarrow{g'} M$$

$$| |$$

$$M \xleftarrow{f} H$$

holds in R-Mod. Consider the following diagram (4)

For all $x \in M$, we have

$$D_H(x) \leq B_{M_1}^I(f_1(x))$$
 $\forall i=1,2,\dots,n,$
 $g^I_i f^I_i = f_I_i, g_I g^I_i = g^I$ $\forall i=1,2,\dots,n,$

and $B'_{M'}(x) = \bigwedge \{B'_{M_i}(x) | i=1,2,\cdots,n\}$. Then $D_H(x) \leq B'_{M'}(f^i(x))$, for all $x \in H$, so $\widetilde{f^i}: D_H \longrightarrow B'_{M'}$ is an F-homomorphism and

$$\begin{array}{ccc} D_{H} & \xrightarrow{\widetilde{f'}} B^{I}_{M'} & \xrightarrow{\widetilde{g'}} B_{M} \\ & & & || \\ B_{M} & \xleftarrow{\widetilde{f}} D_{H} \end{array}$$

holds in FA-Mod. Therefore suboject B' together with the family of F-homomorphisms

$$\{\widetilde{g}_{i}^{i}=B_{M_{i}}^{i}\longrightarrow B_{M_{i}}^{i}|i=1,2,\cdots,n\}$$

is the intersection of the family of subobjects $\{B_{M_i}^i | i=1,\cdots,n\}$ in F_R^A -Mod.

Reference

- [1] Zhao Jianli, Shi Kaiquan, Yu Mingshan, Fuzzy Modules over Fuzzy Rings, The J. Fuzzy Math, 3(1993), 531-539.
- [2] Zhao Jianli, F_R^{λ} -modules and F_R^{λ} -modules Categories The J. Fuzzy Math(to appear).
- [3] Zhao Jianli, Fuzzy homological theroy in F_R^{λ} -modules (1), The J. Fuzzy Math (to appear).

- [4] S. R. LOPEZ-PERMOUTH and D. S. MALIK, On Categories of Fuzzy Modules, Inform. Sci, (52)1990, 211-220.
- [5] S. M. A. Zaidi and Q. A. Ansari, Some results on categories of L-fuzzy subgroups, Fuzzy sets and systems 64(1994) 249-256.
- [6]T. S. Blyth, Categories (Longman, London, 1987).
- [7]B. Mitchell, Theory of Categories (Academic Press, New York, 1965).
- [8]O. Wyler, On the categories of general topology and topological algebra, Arch Math (Basel) 22:7-17(1971).