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Abstract: In this paper we introduce the concept of fuzzy quotient ring
of a ring and establish several isomorphic theorems.
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1. Introduction

Since Liu introduced and studied fuzzy subring and fuzzy ideal many
papers concerned with fuzzy ideal have been published. The purpose of
this paper is to introduce the concept of fuzzy quotient ring and

discuss the homomorphism and isomorphism of fuzzy quotient rings.
2. Preliminaries

Throughout this paper R and R’ stand for rings and L denotes a
complete distributive lattice.
Definition 2.1. A fuzzy subset of a nonempty set X is a mapping from X
to L.
Definition 2.2. Let A be a fuzzy subset of R,if for all x,yER

(1) Ax-y)= Ax) AMY)

(ii) Alxy)=A(x) NALy)
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then A is called a fuzzy subring of R. If condition (ii) is replaced by
D7 ACxy) =A%) VAY)
then A is called a fuzzy ideal of R.
Proposition 2.3. Let A is a fuzzy ideal of R, then
xtA = y+A <==> A(x-y) = A(0). In that case A(X) = Ay).
Proposition 2.4. Let A and B be fuzzy subrings (fuzzy ideals) of R and
R’ ,respectively, f:R—R’ be a homomorphism, then
(i)  f(A) is a fuzzy subring (fuzzy ideal) of R’ and f(A)(0)=AC0).
(ii) £ B) is a fuzzy subring (fuzzy ideal) of R which is constant
on Kerf,
(iii) If £ is an epimorphism,then £f(£ (B)) = B.
(iv) If A is constant on Kerf, then £7'(f(A)) = A.
Definition 2.5. Let A and B be fuzzy subrings of R and R’,respectively,
f:R—> R’ be a homomorphism (isomorphism) from R onto R’.If f(A) = B,
then f is called a homomorphism ( isomorphism) from A onto B, we write
A~B ( AS2B)H.

3. Ruzzy quotient ring

Proposition 3.1. Let A and B be separately fuzzy subring and fuzzy
ideal of R,then A/B is a fuzzy subring of R/B, where
(A/B)(r+B) = sup (A(t): t+B=r+B)
Proof. \/r,,r2€R, (A/B)((r,;4B)~(121B))= (A/B)(t£;-1>+B)
= sup (A(X;—X2) : X1—Xo+B=r,-1>+B)
= sup (A(x3) AA(X2) :X;+B=1,4B, xo+B=r>1B)
sup (A(x;) : x;+B=r,+B Asup (A(X2) : Xo+B=1+B
(A/B)(£114B) ACA/B)( £2+B)
Similarly, (A/B)((r;+B)(r21B)) =(A/B)(r;14B) A(A/B)( r21B)

i

]
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Hence, A/B is a fuzzy subring of R/B.
Obviously, (i) (A/B)(B) = A(D).
(ii) A/B is a fuzzy ideal of R/B if A is a fuzzy ideal of R.
Definition 3.2. Let A and B be separately fuzzy subring and fuzzy ideal

of R, then A/B is called a fuzzy quotient ring of A concerned with B.
4. Isomorphic theorem

Definition 4.1. Let R Z R’ and A be a fuzzy subring of R, then AT is
called the fuzzy kernel of A under f,where
AT(r)= [ACO) if r&€Kerf
{ 0 otherwise
Obviously, A® is a fuzzy ideal of R and A(0) = ACO),
Theorem 4.2. Let A and B be separately fuzzy subring and fuzzy
ideal of R, then A ~ A/B.
Proof. It is clear that f:R— R/B is a homomorphism from R onto R/B,
where f(r) = r+B,
f(A(r+B) = sup{A(t): f(t)=r+tB = supA(t): t+B=r+B = (A/B)(r+B)
That is, f(A)=A/B.
Hence, A ~ A/B.
Theorem 4.3, Let RL Ry, A and B be fuzzy ideals of R and R’,
respectively, such that A(0)>0. If A~ B, then A/A®* &2 B.
Proof. Let g:R/A*—> R’ such that g(r+A®)=f(r),
then we can verify that g is an isomorphism from R/A® onto R’.
VyER, g(A/AT)(y) = sup (A/AT(X+AT): g(x+A%)=y)
sup (sup (A(t): t+AT=x+A®) : f(x)=y)

sup A(t): AT(x-t)=A0),f(x)=yi

sup ACt): x—t&Kerf,f(x)=y} = supA(t): £(t)=y) = £(A(y) = B(y)
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So, g(A/A%) = B and A/A® &2 B.
Theorem 4.4. Let RfJi R’, A and B be separately fuzzy subring and fuzzy
ideal of R. If B is constant on Kerf,then A/B £2 f(A)/f(B).
Proof. Let g:R/B— R’/£(B) such that g(r+B) = f(r)+£(B).
V ti1,12€R,we have
r11B = 124B <===> B(r;-15) = B(0)
<===> £(B)(f(r;)-f(r2)) = B(ry-r2) = B(O) = £(B)(0)
===> f(r;)+f(B) = £f(r2)+£(B)
Hence,g is a one-to-one mapping and further we can obtain R/B &2 R’/£(B).
VY y+(B) €ER’/£(B), 3xER,such that f(x)=y,
g(A/B)(y+£(B)) sup ((A/B)(r4B): g(r+B)=y+£(B))
sup (A/B)(r+B): £(r)+f(B)=f(x)+£(B))
sup ((A/B)(r+B): B(x-r)=B( ()
sup {sup A(t): t+B=r+B : B(x~r)=B(0))
sup (ACt): t+B=x+B
(£CA) /7£(B) ) (y+£(B)) sup f(A)(u): utf(B)=y+f(B))
sup (sup A(v): £(v)=u) : utf( B)=y+£(B))
sup A(v): £(V)H£(B)=f(x)+f(B))
sup (A(v): viB=x+B
That is, g(A/B) = £(A)/£(B)
Hence, A/B &2 £(A)/f(B).
Coroliary 4.5. Let sz R’y Aand B be separately fuzzy subring and
fuzzy ideal of R’,then f~*(A)/f *(B) &2 A/B.
Lemma 4.6. Let A and B be fuzzy ideals of R such that A>B and
A(0)=B(0), then for all x,yER
x+B+A/B = y+B+A/B <===> x+A = y+A.
Proof. x+B+A/B = y+B+A/B ===> (A/B)(x-y+B) = (A/B)(B) = A(Q)
==> sup A(t): t+B=x-y+B} = A(0)
For all t€ (t: t+B=x-y+B) we have B(x-y-t) = K 0) and



115

Yao Bingxue / Fuzzy quotient ring and isomorphic ntheorem

ACx-y) = Ax-y-t) AACE) = Blx-y-t) AACt) = A(t),
So,A(x-y) = sup{A(t): t+B=x-y+B) = ACQ)
That is, A(x-y) = A(0), xtA = y+A,
Inversely, xtA = y+A ===> A(x-y) = A(D)
===> A/B(x-y+B) = sup{A(t): t+B=x-y+B} = A(x-y) = A(0) = A/B(B)
===> x+B+A/B = y+B+A/B.
Hence,x+B+A/B = y+B+A/B <{===> x+A = y+A.
Theorem 4.7. Let A and B be fuzzy ideals of R such that A=B and
A)=B(O).If C is a fuzzy subring of R, then (C/B)/(A/B) &2 C/A,
Proof. Let £:(R/B)/(A/B)—>R/A such that £ r+BtA/B)=r+A
From Lemma 4.6 we can prove that £ is an isomorphism from (R/B)/(A/B)
onto R/A. VWV r+B+A/BE(R/B) /(A/B)
(C/B)/(A/B)(r+B+A/B) = sup ((C/B)(x+B): x+B+A/B=r+B+A/B)
sup (sup (C(t): t+B=x+Bi : x+B+A/B=r+B+A/B
sup (C(t): t+B+A/B=r+B+A/B)
sup (C(t): t+A=r+A) (C/A)(r+A)
(C/A) (£Cr1B+A/B)) £71(C/A) (r+Bt+A/B)
Hence (C/B)/(A/B) = £ X C/A).
From Proposition 2.5 we obtain f((C/By/(A/B)) = C/A
That is, (C/B)/(A/B)y &£ C/A.
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