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ON OPERATOR LATTICE
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ABSTRACT

The basic principles and results of intuitionistic fuzzy set introduced by K. Atanassov are extended to
intuitionistic fuzzy logic®~*. In 1989, Liu Xuhua introduced operator fuzzy logic and its A — resolution
method™. In this paper,intuitionistic operator fuzzy logic(JOFL in simple)on operator lattice L= { (s, v) |
u#sv€[0,1]} is defined. Then some properties of them and (u1,v) —resolution methed are discussed.
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Definition 1 The operation ‘#* ’; ‘@’and “’on L= {(g,v) |,v€ [0,1], p+v<1}are
defined as follows,for ¥V (g;5v),(pp,v) €L,

(1 50p) * (pz592) & (min(py , ) ;max(vy,0;)),

(g1 59 ) D (g s p2) & (max (pey 5 12) ymin(vy,0;))

(p1sv1)’ A Uy py).

Note that,these three operations is closed in L.

Theorem 1 Algebra system (L, * ,@®) is a lattice.

Proof. It’s obviously that binary operator ” * ® and ” @®” can be exchanged and
associated. The absorption law is satisfied.

Theorem 2 (L, * ,@,’)is a complete complementary distributive lattice.

Theorem 3 The operator operation ” * ”in (La* ,@,’)is defined as follows,¥ (g,,v),
(pz59) € Ly (g p0y) ° (uzy0) = ((y+p2)/2, (0, +v2)/2) »s0 L is a operator lattice.

As above, L is satisfied with the condition of the operator lattice which is defined in
article[ 3].

According to the result of Theorem 3,IOFL on operator lattice can be discussed.

Definition 2 Let P be a symbol of atom, (p,v) € L, (2, v) P is regarded as an
intuitionistic fuzzy atom (IF atom). '

Definition 3 The formulas in IOFL are symbol strings which are defined successively as
follows: (1) An IF atom is a formula; (2)If G is a formula, (1,vV)G, (~G)are formulas; (3)If
G, H are formulas,(GAH),(GV H),(G—~H) ,(G—~H)are formulas; (4)If G is a formula,
x is a free variable in G, (V¥ x)G(x), (3 2)G(z), ((g, )V 2)G(2), ((p,v)T )G (1) are
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formulas; (5) All the formulas is the strings which use (1)~ (4) finite times.

Definition 4 The true value V;(G) of formula G under interpret I is fixed as follows:

(DI (gywWPis an IF atom,Vl((p,u)P)={§:::; :::::: i ;: :zzz::: :::;

(2)1f G, H are formulas,let V;(G) =Q(a,d) ,V:(H)=(c,d),¥ () €D,V (G(z))=
(a.,b.),

V()G A (us0) 2 V(G5

IV, (~G)a(ba);

0)V,(GV H) 4 (max(a,c) »min(d,d));

N)V(GAH)a (min(aysc) ymax(d,d));

VOIV(G—H)AV(~GVH)

VDOVI(G~H) AV i((G—~H) AN (H—~G));

VDV (Y x)G(x))A(:relga,,fggb,);

VIDV,((3 x)G(x))A,(Etelgau:ixelgb,);

KOV (((u, )V 2)G(2)) oV ((0) (V¥ 2)G(2))) 3

XV ()T 2)G(2)) AV ((uy0) ((A 2)G(2))).

Definition 5 If for the arbitrary interpret I there exist V;(G) =V,;(H),formula G is
equal to formula H, which can be signed G=H.

Definition 6 Let G be a formula, (u,v) € L,let V;(G) = (ue»ts) , If for the arbitrary
interpret I,there is uc=>pu, ve<<v,G is called (g,v) —identically true; If uc<<prus=0,G is
called (g,v) —identically false.

From the defintion 4,some properties of IOFL can be obtained, hence it is obviously that
G is (u,v) —identically true iff ~G is (u,v) —identically false.

From afore said,an arbitrary formula in IOFL is equal to a prefix normal form. It’s easy
to prove that formula G is (u,v) —identically true iff the skolem form is (u,v) —identically
false. Hence ,an arbitrary formula G corresponds a set S of clauses and G is (pt,v) —identically
false iff S is (p,v) —identically false.

Definition 7 (p,,v,)P and (p,,v;) P are called (p1,v) —complementary literals if p2;>p,v,
<v and p;<v,v;>p or py<<v,u;>p and p,>p,v;<<v when p=0. 5,v<<0. 5 for given (g,v)
€ L. (It’s just contrary to this when p, <<0.5,1,>0.5) .

Definition 8 (g, ,u,) P and (p;,v,) P are called (p,v) —similar literals if g¢,>>p,v,<<v and
> 50, <<v or p;<<v,u,>p and p<v,v,>p when p=>0. 5,v<00. 5 for given (p,0) € L. (It’s
just contrary to this when p<<0.5,v>0.5).

Definition 9 Let C, and C; be sentences with no variables in common,let (g,,v,) P, and
(pz+ ;) P, be literals in C; and C, respectively,If P, and P, have a most general unifier o
(MGUs") ,and (p;,0,) P,* and (gp0,) P,° are (u,u) —complementary literal each other,the
clause (C;°—S;) U (C,’—S,) is called two variables resolution formal of C, and C,,it can be

signed R(p,v) (C,,C,),in which
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Sy={(u" 0 )P?| (u* y0* )P'EC,"y (p* y0* )P’ and (1,0,) Py’ is (o) —similar},

S,={(p* 50" )P*| (u* ,0* Y)PEC,"» (* v )P’ and (3,v3) Pz is () —similar}.

Definition 10 Let (g,,9,) Pyy+*, (t4,,0,) P, be literals in clause C, if PyyPyye+y P, have
MGUo and (pt159) Py%5 %5 (tta s ) P,* are (pt,v) —similar literals,C” is called a factor of C.

Definition 11 Two variables resolution formal of C;(or the factor of C,) and C;(or the
factor of C,) is called (u,v) —resolution formal of C, and C,.

Definition 12 Let S be a set of clause,S¥i? is called primary reduced set of S in which
(u,v) € L. S¥:” is obtained with the method as follows,for V (u* ,v*)PES.

(1) When p=0. 5,u<0. 5 if v<p* <p or v<v* <, delete (p2* ,v* )P from S;

(2)When p<<0. 5,u>>0. 5,if p<p* <v or p<v* v, delete (1*,P) from S.

Theorem 4 Let S be a clause set and (y,v) € L,so S is (u2,v) —identically false iff S¥&” is
(i,v) —identically false.

Proof. Use the properties of IOFL ,Definition 6 and Definition 12.

Definition 13 Let S¥:”be a (u,v) — primary reduced set,and Siz"” is called (p,v) —
reduced set of Sif ¥ (u* ,v")PE S¥" can be done these replacement:

(1)When p* =>0. 5,0° <0. 5,if p* >p,v* <v, (#* ,v" )P is Yeplaced with P; if p* <v,
v*>p*, (p",v° )P is replaced with ~P.

(2)When p* <0.5,0°>0. 5,if p* >v,v* <p,(u",v" )P is replaced with P;if p* <p,
v* >u, (u* ,v* )P is replaced with ~P.

It is obviously that S¢"?=S§"*.

Theorem 5 Let C; and C; be two clause sets,C{&” and C$f” are (p,v) —reduced set of C;
and C; respectively. If C=R,,» (C1,C:) sthere exist C' =R(C{&”,Ci&*”) which makes C' =
C¢”. Otherwise,if C' = Rp» (C1z*”,C2®”) there exist C=R¢» (C15C;) which makes
cgr=C_. '

Proof. Use Definition 9 and Definition 13.

Theorem 6 S¥” is (p,v) —identically false iff S¢* is identically false.

Proof. Let p=>0. 5,v<{0. 5 might as well,using Definition 6,Definition 12 and Definition
13. :

Theorem 7 For (u1,v) € L if a clause set of S is (u,v) —identically:false,there exist (u,
v) —resolution deduction which can be deduce (y,v) —empty clause frd_m S and an arbitrary
literal (u* ,u* )P in empty clause will be satisfied with v<p* <p or <o <p.

Proof. Use Theorem 4, Theorem 5 and Theorem 6.

One of the properties of TOFL is (g;,0;) (g 503) P7 ((pt1591)0(p21502)) P (we can make
example to proof it). So the literal (g, ,v;,)***{pto,u.) P can not be simplified to (" ,v*) P. In
order to introduce (u,v) —resolution, the concept of (u,v) —complementary literals-and (g,v)
—similar-literals will be extended.

Definition 14 (g3 vp) *** (ptias V) P and (15 V21) = (ft2as Uzm) P are called Cp,v) —
complementary literals if they satisfy following:
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(DIf 0. 5,v<0. 5,

when P is appointed T by I {Pu -P1n>#’{p21u.%<u’
0,E<v WS

Hay** qu>p.

Ugyee Uzn<°

coo#1n<u
U Um>#

TS

1 }1<0- 5,u>0.5

when P is appointed F by I .{
when P is appointed T by I ,{

Byt gy, >0 {l-‘zx"'#t-<!‘
e <p ey SV
Bue g <p {Pn *Haa >V
Uppeetb >0 ’ Un"‘”z-<P-
Definition 15 (pt11511)*** (pt105912) P and (pea; sy ) *** (ptza sz ) P are called (pe,v) —similar
literals if they satisfy following:
(DI p=0. 5,v<0. 5,

when P is appointed T by I ’{Pu

when P is appointed F by I {

e >p Hzx"‘#zn>}‘
<V ’ 12U <V ’

when P is appointed F by ],{“" 1<V {I‘zx‘ 'Fu<0'
Ut U >p Uyt >u
Q1 p<0.5,v>0.5,

2>V >v
when P is appointed T by I, Pt Ha ™"t

o, Lp gy <lp
Byt <p {F‘zx"'l‘n<#
Uy *ee0, >V ’ Uz ***Uza >V |

The concepts of two varibles (p,v) — resolution form, (p,v) — factor and (u,v) —
resolution form are the same as aforesaid definitions. Thus the (u,v) —resolution method of
this general clause set can be discussed similar.

‘Note that,when pu+v=1,lattice L and operator lattice on [0,1] are isomorphism. The
result of this paper is showed no difference from article(3). Thus the method of this paper is a

extension of article(3].

when P is appointed F by I ,{
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