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Abstract

In this paper a certain transformation of triangular-norms (called n-annihilation) is stud-
ied. This problem is strongly related to the contrapositive symmetry of residuated implications.
We characterize those continuous triangular-norms where the annihilated binary operation is
triangular-norm. Some surprising properties of nilpotent triangular-norms are presented e.g. the
nilpotent minimum is described as limit of nilpotent triangular-norms. As a consequence, a new
family of triangular-norms (called nilpotent ordinal sums) owing several attractive properties is
discovered. The new family contains the nilpotent triangular-norms and the nilpotent minimum
as limit cases and can be admitted into investigations in the theory of Girard-monoids as well.

1 Introduction

A triangular norm (t-norm for short) is a function T from [0, 1)? to [0,1] being commutative, associative,
nondecreasing in each place and T'(1,z) = =z holds for all = € [0,1]. Throughout this paper n denotes a strong
negation (i.e., an involutive order reversing bijection of the closed unit interval).

Let T be a t-norm. Define the binary operation T{,) as follows:

Tiny : 0,1} x [0,1] = [0, 1];

T(z,y) ifz>n(y)

Tiny(z,y) = : (1)
0 if z < n(y)

In this paper we characterize those continuous t-norms T where T, is a t-norm too. Fodor has given the
following examples for this problem in [1):

1) If T(x,y) = min(x,y) then T,y is a t-norm.

2.) T (x,y) = w -y then Ti,,y is not associative, hence not a t-norm.

The origin of the problem can be found in [1] in the following context.

1.1 Contrapositive symmetrization of residuated implications

The residuated implication function Iy : [0,1] x [0,1] — [0, 1] generated by the t-norm T is defined via
Ir(z,y) :=sup{z € [0,1] : T(x, 2) < y}.
We say that a binary operation I has the contrapositive symmetry property with respect to n if and only if

I(z,y) = I(n(y), n(z)) (2)
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holds for all z,y € [0,1]. Generally, a residuated implication (generated by a t-norm) doesn’t fulfil this
property. Then we can symmetrize it as follows:
Suppose that T is a left-continuous t-norm. Define a new operation associated with Ir:

t »7y = max{Ir(z,y), Ir(n(y), n(z))}.

Define also a binary operation 1 by

z +7 y = min{T(z,y), n[I7(y, n(2))}}.

+r is a fuzzy conjunction having nice properties but generally, it is not a t-norm. —7 always has the
contrapositive symmetry property w.r.t. n and this is the fuzzy implication generated by * via residuation
(see Theorem 2. in [1]). So, if #r is a t-norm T then 7= IT and Ir admits the contrapositive symmetry
property. More precisely Iz has the contrapositive symmetry property w.r.t. Ir(z,0). Now the question
arises naturally: Under which conditions can we state that *r is a t-norm ? For a left-continuous t-norm T
the residuated implication defines an order on the closed unit interval (i.e., < y if and only if Ir(z,y) = 1)
so we can see that z *py = 0 if y < n(z). The definition of *r yields as well that z*xry < T(x,y) ify > n(z).
Obviously, :

1.) *r coincides with T(,) defined in (1)

if and only if

2.) T(z,y) < n[Ir(y,n(z))] holds for y > n(z).
Therefore, solving equality (1) gives us a chance to find new t-norms, for which the residuated implication
generated by them admits (2).

1.2 Girard-monoids

Another important application is related to the theory of integral commutative residuated lattice ordered
monoids. Let (L,V,A,1,0) be a lattice with greatest element 1 and least element 0 and (L,M) be a com-
mutative semigroup with unit 1 and zero 0. (M is used as the model of "and”.) Consider the structure
L= (L,V,A,1,0,M). Suppose that the distributivity law holds, i.e., for all a,b,c € L

an(bV ¢) = (anb) V (aMc).
Now define the implication via residuation. In other words, suppose that all residuals exist:
z—ny:=sup{z € L | zNz <y}

Then introduce residual complements via

= z-on0.

Clearly, 0' = 1 and 1’ = 0. Finally, define the dual semigroup operation with the help of the De Morgan Law
as follows:
!

xly == (z'My’)
Then the involutive property of ' plays an important role. Namely, consider the following:
all0 = (a'N0’) = (a'M) = (o).
Therefore, the involutive property of / is equivalent to the property all0 = a, which is a crucial point of the
construction. If (a’)’ = a holds then L is called a Girard-monoid.

Turning back to the most important mathematical application, where £ = {0, 1] and the logical connective
"and” is modelled by a t-norm it yields the following problem: Characterize those left-continuous t-norms T'
where Ir(z,0) is involutive.
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Among continuous t-norms the answer is known (see e.g. Section 1.8.2 in [3]). These are the t-norms which
are -transformations of the Lukasiewicz t-norm which is defined by the following formula:

W(z,y) = max{0,z +y — 1}.

In other words the nilpotent t-norms.
Another example is the nilpotent minimum (see [1]), which is defined by the following formula:

] | min(z,y) ify>n(z)
ming(z,y) = { 0 otherwise

It was proved in [8] that any strong negation n can be represented in the following form

n(z) = ¢~ (1 — p(z)), 3)

where ¢ is an automorphism of the closed unit interval. Using this representation of n, the following formula
is obtained for nilpotent minimum with respect to n:

: N_J 0 if p(z) + (y) <1
roinol,v) = { min(z,y) if p(z) + ply) > 1

This paper presents a wide class of new t-norms with the desired property via solving the problem mentioned
at the beginning of this section.

1.3 Left-continuous but not continuous t-norms

In [3] the authors’ conjecture is that the nilpotent minimum (up to an automorphism) is the only t-norm
which is left-continuous but not continuous. It is not so, since e.g. an ordinal sum (see [6]) defined by one
nilpotent minimum summand is as well left-continuous and not continuous and not isomorphic to the nilpotent
minimum. However, examples of this type are trivial counterexamples since all of them are built with the help
of the nilpotent minimum itself. Clearly, any discontinuous solution T(y) of the equation (1) which is different
from the nilpotent minimum, gives a non-trivial example for left-continuous but not continuous t-norms.

1.4 The annihilation problem

Several recent papers deal with the problem of finding methods which produce new t-norms out of known

t-norms (e.g. [5]). Therefore, solving (1) has its own interest. We call the method, which produces T(n) from
T n-annihilation.

The paper is organized as follows: In the next section a brief preliminary is given. Then in Section 3
we investigate the relation between the annihilation problem and the other problems which were mentioned
in the introduction. In Section 4 we present the main theorems of this paper. Characterization of those
continnous t-norms where the annihilated operation is a t-norm is given. In Section § we present some facts
about continnous Archimedean t-norms. The introduction and investigation of the nilpotent ordinal sumns is
presented in section 6. Finally, the conlusion of the paper is given in Section 7.

2 Preliminaries

A t-norm is said to be continuous if it is continuous as a two-place function. A continuous t-norm T is called
Archimedean if T(x,z) < z is true for all z € (0,1). A t-norm T has 0-divisors if T'(xz,y} = 0 for some
z,y € (0,1). A continuous Archimedean t-norm with 0-divisors is called nilpotent. If ¢ is an automorphism
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that is, an increasing bijection of the closed unit interval, then the following formula defines the so called
p-transform of T' (which is as well a t-norm):

To(z,y) = ¢~ (T(¢(2), (),  z,y€[0,1].

Suppose that {[a;, b;]}ick is a countable family of non-overlapping, closed, proper subintervals of [0,1],
denoted by Z. With each [a;,b;] € T associate a continuous Archimedean t-norm 7T;. Let T be a function
defined on [0,1]? by

Tiay) < [ @+ b= al; (B2 %) if(a,y) € fai b2 )
’ min(z, y) otherwise

In this case T is denoted by I1{([a;, b;], T;) }ick and called the ordinal sum of {([a;, b;], T}) }icx and each T; is
called a summand. Ling’s theorem [6] says that a t-norm is continuous if and only if it is (a possibly empty)
ordinal sum of continuous Archimedean t-norms.

3 The relation between the annihilation problem and the
other problems in Section 1

In this section we point to the fact that the annihilation problem, which was described at Subsection 1.4
1s equivalent to the problem which was described at Subsection 1.1. That is, finding all the left-continuous
t-norms which can be n-annihilated is equivalent of the finding all those left-continuous t-norms where the
residuated implication generated by them admits the contrapositive symmetry property with respect to a
strong negation n. Moreover, in the more general structure (integral commutative residuated lattice ordered
monoids) the (suitaby extended) annihilation problem leads exactly to the problem which was described
in Subsection 1.2. That is, the involutive property of ’ is guaranteed if and only if N is a solution of the
(extended) annihilation problem.

The following proposition and its corollary are consequences of some results in [4].

Proposition 1 Suppose that L is a Girard-monoid. Define a new implication as follows (this implication
is often referred to as S-implication in the literature):

Ty =z'ly.
Then for all x,y € L it holds true that z =, y =z —n y.

Corollary 1 Let L be a Girard-monoid. Then —n admits the contrapositive symmetry property with
respect to'. That is, © 90y =y —n a' holds for all x,y € L.
The previous corollary says that the contrapositive symmetry of —n restricted to 0 (i.e., £ = 0 = 0 —n
@' =1 —=n a2’ = 2') yields the contrapositive symmetry of —n with all y's (i.e., z 9ny =9 —n 2').

Corollary 2 Let T be a left-continous t-norm. Then Iy admits the contrapositive symmelry property
with respect to a strong negation n if and only if It(x,0) is involutive. In this case n(z) is equal to Ir(z,0).

4 The characterization

Denote by ¢ the unique solution of n(x) = z, where n is a strong negation and = € [0, 1]. Now we characterize
those continuous Archimedean t-norms, which can be n-annihilated (i.e., the n-annihilation remains a t-norm).

Theorem 1 Let T be a continuous Archimedean t-norm. Then T can be n-annihilated if and only if T
admits the Law of contradiction w.r.t. n (i.e., T(z,n(z)) = 0 holds for all z € [0,1]).
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Definition 1 A t-norm T is said to be a trivial annihilation (with respect to the strong negation n) if
n(z) = I7(z,0) for x € [0,1]. One can see easily that if a continuous t-norm T is trivial annihilation (with
respect to the strong negation n) then T(z,n(z)) = 0 for all z € [0,1] and hence the binary operation T,
defined in (1) is equal to T. The opposite implication is generally not true since T'(x,n(x)) = 0 implies only
’I’l(iL’) < IT('T,O)'

Definition 2 Let Ty and T5 be t-norms. T} is said to be similar to T, with respect to the annihilation
along the strong negation n (T} <, T3) if

Til{@ w12 | 2>nw) = Tel@wenp | z>n@)}-

Obviously, Ty <, Ty if and only if T () = To(n) and it is clearly an equivalence relation.

Definition 3 Let T be a continuous non-Archimedean triangular norm, let ([a, b],7;) be a summand of
T. We say that this summand is in the center (w.r.t. the strong negation n) if a = n(b). (The name is based
on the observation that if we evaluate n(z) = 1 — z then this condition yields that [a,b] X [a,b] is indeed in
the center of the unit square.)

Now, for each strong negation n and for each summand ([a, b],T}) which is in the center w.r.t. n, we define
a stong negation n? as follows (z € [0, 1]):

i) = M lrdrae (5

Straightforward calculation shows that n} is indeed a strong negation. Notice, that this negation is "a part”
of the negation n in the sense that we zoomed n|j, 4 to [0,1] x [0,1]. In other words, this is the "negation”
which goes inside the summand. As we will see this negation plays an important role in the characterization.
Now we present the main theorem of this paper. This theorem together with Theorem 1 gives the character-
ization of the continuous t-norms which can be n-annihilated.

Theorem 2 Let T be a continuous non-Archimedean t-norm. Then Tiny is a t-norm if and only if
1.) T ¢, min or
2.) T is similar to a t-norm which is defined by one trivial annihilation summand in the center. More
formally, T &, T{([a,b],T1)} where a < b, a > 0, a = n(b) and T, is trivial annihilation w.r.t. to the
negation nb.

5 On continuous Archimedean t-norms

Althought easy calculation reveals, it is not well-known that not only the Lukasiewicz t-norm is trivial
annihilation w.r.t. 1 — x. Now, we characterize those continuous Archimedean t-norms which are trivial
annihilation w.r.t. n. In other words, those t-norms for which Ir(z,0) = n(z) holds. That is, those t-norms
which has positive values exactly in the upper right ”triangle” of the unit square limited by the graph of n.

Definition 4 We call an automorphism symmetric if its graph is centrally symmetric to the point (%, %)
Let Ty and T be two nilpotent t-norms. That is, T\, = W,,,, T) = W,,, for some automorphisms ¢; and ¢
of the closed unit interval, respectively (see [7]).

Proposition 2 The automorphisms are unique.
It is well-known from Corollary 1,2. in [1] that Ir, (2,0) = o7 (1 — p1(x)) and Iz, (x,0) = @5 (1 — pa(x)).
Denote these two negations by n; and no, respectively.
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Proposition 3 n; =ny if and only if Y =1 0 <p2‘1 is a symmetric automorphism.
Proposition 3 says that having a t-norm T' with the negation n(x) = Ir(z,0) the negation (n,(z) = Ir,(z,0))
of T, remains n(z) if and only if ¢ is a symmetric automorphism.

As another surprising fact, we present now that the nilpotent minimun can be described as the limit of
continuous Archimedean t-norms, where each continuous Archimedean t-norm has the trivial annihilation
property w.r.t. 1 —xz. This means that the graph of a continuous Archimedean t-norm can be very similar
to the graph of the nilpotent minimum.

Theorem 3 There exists a sequence of continuous Archimedean t-norms Ty (k = 1,2...) such that
limg_, 0 Ti(z,y) = ming(z,y). Moreover, for all k, T}, is trivial annihilation w.r.t. 1 — z.

Remark 1 Inorder to give another impression about the wide variety of continuous Archimedean t-norms
we recall that any continuous t-norm (that is, an ordinal sum with continuous Archimedean summands) is a
uniform limit of continuous Archimedean t-norms (both nilpotent or strict ones). For detailes see [2).

6 Nilpotent ordinal sums

Let n(z)(= ¢! (1—¢p(x))) be a strong negation, ¢ its unique fixed point, a € [0, ] and T} is trivial annihilation

t-norm w.r.t. nZ @
Define
0 if x < n(y)
Thamr(z,y) =4 a+(n(a) —a) T ——(‘;5:;, Hf‘;;——) ifa <z,y <n(a) and z > n(y) . (6)
min(z,y) otherwise

If a € (0,t) then a t-norm of this type is called a nilpotent ordinal sum with respect to the strong negation
n. Without any restriction for the parameter a it is called a nilpotent ordinal sum in the extended sense.
Consider the following family:

= {T i T=TH,G,T1 ) aE (O,t)}

Theorem 2 yields that any element of J is a t-norm. A tipical nilpotent ordinal sum has the following
structure (see Figure 1.).

Theorem 4 For anyT =T, 47, € J the residuated implication generated by T admits the contrapositive
symmetry property with respect to n. The residuated implication generated by T has the following form:

1 ifz <y
Ip(e,y) = { max(a + (n(a) —a) - Iy ( ;(’;JL_‘—(;, m n(: fa<x<nla) and x>y . (7)
max(y, n(z)) otherwise

Theorem 5 Any two members of the family J are isomorphic to each other.

This family of t-norms and the corresponding implications have not been known in the literature yet. Con-
cerning the contrapositive symmetry of fuzzy implications, from [1] we know that a residuated implication
which was generated by a left-continuous t-norm has the contrapositive symmetry property w.r.t. n if and
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only if the R-implication (i.e., Ir) and the S-implication (i.e., S(n(z),y) = n(T(x,n(y)))) coincide. So far,
two examples were known for that.
1.) The trivial annihilation continuous Archimedean t-norms and the
2.) nilpotent minimum.

According to Theorem 4 there is a third family:
3.) the family of nilpotent ordinal sums.

This family can be described as a bridge between the first two ones. Indeed, one can check easily that
(lll_ﬂl} Tne1 = ming, and ;i_rf})Tn,a,Tx =T

holds. That is, the family 7 contains the first two ones as limit cases. Moreover, notice that the members of
this family change continuously with respect to the parameter a and the following holds true:

Tn,t,T1 = mino,w and Tn,O,T1 = Tl.

7 Conclusion

In this paper we characterized the solutions of the annihilation problem (see (1)) under the assumption that
T is continuous. The following theorem is established:

Theorem 6 A continuous t-norm T can be n-annihilated if and only if the annihilated t-norm Tiny is an
element of the family J (see Section 6).

As a consequence, a new family of t-norms (the nilpotent ordinal sums) was discovered. The residuated
implication generated by any member of this family admits the contrapositive symmetry property. Moreover,
the nilpotent ordinal sum family (in the extended sense) contains the nilpotent t-norms and the nilpotent
minimum as well which have been the only known examples with the above-mentioned property.

A characterization of those continuous Archimedean t-norms which has 0-value exactly when z < n(y)
for a given strong negation n is given. The nilpotent minimum of Fodor is described as limit of nilpotent
Archimedean t-norms, which have the above-mentioned property with n(z) =1 — z.
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A nilpotent ordinal sum

Figure 1.




