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1 Introduction

The kernel of any fuzzy controller (both Mamdani and Sugeno type) is a rule
base. There are several methods for determining of appropriate rules in common
use. Methods which enable exact synthesis of rules in order to obtain prescribed
behaviour of the controller (to fulfill quality requirements, dynamic behaviour
etc.) like analytical controller design for conventional controllers are in the stage
of theoretical considerations yet. For practical applications the use of empirical
methods is necessary. We usually use the fuzzy regulator to substitute a human
operator controlling a system with unknown mathematical model.

In this case, rules may be obtained by the application of different methods of
knowledge acquisition. An experienced expert or skilled operator is interviewed
and asked which rules he uses in a specific situation to obtain a successful
decision. But even a successful operator is often not able to describe his decision
processes satisfactorily. He is not able to formulate all rules explicitly. One
possible method is to observe the operator’s activity, to store values of all
variables observed by the operator and his corresponding decisions and then to
try to find appropriate rules by analysing the data. _

The most popular technique for this purpose is the use of neural nets. The
suitable neural net can learn operator’s behaviour by means of a training set
containing measured data and decisions. We do not find specific rules. They
are distributed as well as membership functions in connections (weights) into
the whole net. From the point of view of controller design or maintenance there
are two serious problems in this approach.

The neural net can learn all rules only with help of a training set. We have
usually a little information on the structure of the training set, if all possible
states of the controller are represented in this set. Similarly we have little
knowledge if all areas of the controller state space are occupied by any rules.
The nonexistence of rules in specific areas is manifested by the malfunction
or failures of the controller. Correction needs new learning with additional
training set. It leads us to the second problem. In industrial applications we
usually have some prior information. ( An operator can formulate many rules
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explicitly.) Due to the distributed structure of the neural net, integration of
prior information with information obtained by learning, is very limited. It is
a great disadvantage for tuning of industrial controllers.

Measurements of pertinent variables are usually noisy. It limits the use
of methods like [1], based on specific weighting of possible rules. This and
the above-mentioned facts are main reasons leading to the attempt to utilize
statistical methods for the search for rules using empirical data. But this way
is also not straightforward.

QOur first problem is the fact, that the dimension of the controller’s state
space need not correspond with the number of variables measured or observed
by an operator. Sometimes the operator’s decision depends on variables that
are measurable indirectly. For instance decisions of an operator controlling
a biotechnological process depend on colour and smell of the mixture in the
reactor and these variables are manifested as concentrations of specific liquid
and gaseous components [2]. From this point of view it is difficult to distinguish
whether all variables necessary for decision are available. On the other hand, the
controller is a dynamical system and usually it is necessary to consider previous
values of these variables. Usually it is impossible to assume, that the operator
would be familiar with differential equations. His decision depends on history
of these variables often subconsciously and he is usually unable to express these
dependencies explicitly in the rules. To obtain these missing delayed variables
we have to identify the structure of the model describing dynamical behaviour
of the operator, the structure of the rules.

The information necessary for decision is carried by certain variables and
their specific delayed values. Having no knowledge on a mathematical model
of the controlled system, we try to measure all variables potentially carrying
information for control. It is possible that in the set of measured variables there
are variables carrying negligible or zero information and/or any variables are
redundant. Our aim is to choose all variables relevant for control decisions and
to exclude all others. The number of all relevant variables determines dimension
of controller state space. On this initial level we deal with different kinds of
variables. An illustrative example is on table 1.

Table 1: Data carrying information for operator’s decision

k|l ©n Vg U3 on v Vg
A| B | C
11013 0.1|0.5(0.4| Medium | FIL | 135 | 0.15
008020404 High FIL | 86 | 0.75
310.26(03)0.5]0.2 High CH, | 32 | 0.48

b

The table contains data necessary for control of a biotechnological process,
which consist of values of six variables: v; is, e.g. the concentration of the
substrate. This is a crisp metric variable exactly measurable. v; is the colour of
the batch subjectively perceived by operator. This variable is a fuzzy variable.
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The following variable vz (level of foam) is taken as ordinal crisp variable. Next
variable, vy (occurrence of bacterial colonies in filament form and occurrence of
CH,4 bubbles) is a crisp nominal variable. Remaining two variables vs and vg
are also crisp metric variables. As we will see later, a general tool for processing
so different kinds of data provide, information measures especially entropy and
mean mutual information.

2 Structure identification of the rule base

Tor the choice of relevant variables we will use an approach known as General
Systems Problem Solver (GSPS) according to [3]. It is out of frame of this
paper to describe GSPS in the whole. We try to outline only the specific part
useful for our purpose. Let us consider that we have a table containing values
of variables potentially describing an operator’s behaviour. For simplicity let
us assume initially that all variables are crisp metric variables as on the table
2.

As we can see later our considerations may be extended for all kinds of
previously mentioned variables. Let us consider further that a requisite (from
the statistical point of view) amount of data is available and that the variables
are optimally sampled in time. (One method for determining an optimal sam-
pling frequency for nonmetric variables is in [4]). We have also a valuable prior
information — we know which variable represents operator’s decisions, it is the
output of our identified system. Our task is now to distinguish which variables
and their delayed states carry the necessary information.

Table 2: Activity matrix

k| =y 9 T3 | 00| 2z, Y

110157132185} ---|24.8 31.7
211257133 | 43 |---1 8.6 |25.6
3186 1|25 (276|---]113.2| 8.1
413391 86 {076 ---] 6.3 | 2.2
51 3.2 {457 |87.6 | ---]|0.37| 8.9
612561018156 .--1 3.2 | 2.7
71287 |817]0.05(---]1343| 7.6

The matrix as on the table 2 is called the activity matrix of the system. If
the interpretation of all variables is available (the number of quantising levels,
units for their measurements, the domain of their possible values etc.) then both
activity matrix and interpretation provide data system in Klir’s terminology.
To obtain a generative system — mathematical relation among variables, which
allows to generate the same data as in the activity matrix the variables carrying
maximum information for the examined variable must be chosen. An actual
value of the output variable is the generated element and actual or delayed
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values of relevant variables are generating elements.
The generated element and generating elements are connected by the trans-
lation rule for instance as

zo(k) = f(ze(k — 1), 3(k), 23(k — 1)) 1)

The translation rule corresponds with a specific matrix called mask. Gen-
erally the mask is a matrix v(d 4 1) where v is the number of variables and d
is the depth of memory.

The mask corresponding with translation rule 1 is on the table 3.

The elements of a generative mask according to [5] are zero, negative or
positive, meaning "neutral element®, ”generating element® and ”generated ele-
ment* respectively. There are many possible masks. Among these masks there
are one or several masks that choose all necessary variables for description of op-
erator’s behaviour considered as optimal masks. There are different approaches
to find an optimal mask. For the overview we refer [3], [5], [6].

Table 3: Mask corresponding to translation rule 1

Ty X3 T3 c Tp Y

0 0 0 {---1 0 0 k=2
0 o|l-1]---|0|-2]k=1
-3 04 0 {+11k=0

In our case, we apply for simplicity the ”classical“ method [7], [8]. In prin-
ciple the method is the following. We start with actual value of variable y and
we find which actual or delayed values of any other variable in the mask carry
maximal information for y. Information carried by variable x for output y is
measured with help of mean mutual information

T(X:Y)=HX)+H(Y)-H(X,Y) 2)

where

H(X) =~ Pjlog, P, ®)

is the entropy, ¢ is the number of quantising levels for the appropriate vari-
able. Entropy is usually estimated from frequencies as

. 1d
H(X)=log; N - >~ Njlog, N; (4)
j=1

where N; are frequencies of occurrence of individual values of relevant vari-
ables.

The algorithm for the search of variables constituting the optimal mask is
the following. We find max{T(Y : X;)}, where ¢ = 1,2,...,v(d — 1). Let us
imagine, that the maximum will be obtained for z. Now we find maximum
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information carried by the pair @;o, 27, where j = 1,2,...,v(d — 1), # 4. We
obtain x;9. In the following step we find maximum information carried by the
triplet @50, 20, 2k fork = 1,2,...,v(d-1), k # ip, k # jo, etc. More information
on the practical application of the presented method is in [7], [8].

In an ideal case the process is terminated if any subsequent variable does not
carry additional information. In a real case, especially for dynamical systems,
the problem is not so simple. If for instance y(k) depends on y(k — 1), then
y(k —1) depends on y(k —2) and y(k — 2) carries some information for y(k). We
must examine, whether y(k — 2) carries some information for y(k), excluding
variability of y(k — 1). It may be accomplished with help of conditional mean
mutual information.

TY (k) :Y(k-1),Y(k=-2))-TY (k) :Y(k=1)=T(Y(k) : Y (k-2)[Y (k-1))
(5)
If y(k — 2) is relevant with respect to y(k), then conditional information (5)
is zero. Because we do not deal with entropies but with estimates of entropies,
we usually obtain a small nonzero value of the mean mutual information. Now
it is necessary to distinguish whether this small value will be considered as zero
or not. In other words it leads to testing of the hypothesis ”"both variables are
independent“ against the alternate hypothesis ”they are not independent®. The
mean mutual information may be transformed into variable with approximately
x? distribution and the x? test may be used for this purpose. The problematic
of testing of entropies and information and calculation of degrees of freedom is
also out of frame of this paper. For the overview of this topic we refer to [9].
Using this method, we obtain a suboptimal mask, [7]. Sometimes we obtain
several equivalent masks. The choice of an appropriate mask depends on the
experience of the designer and on the prior information, for instance on obstacles
in the measurement of individual variables. Having the mask, we have all
necessary variables or in other words we have the dimension of the controller
state space.

3 Extension for fuzzy variables

It is clear from table 1 that we deal with different kinds of variables. For
all kinds of crisp variables (metric, ordinal, nominal) the use of informational
measures as entropy and mean mutual information is fully acceptable. Fuzzy
variables need more careful approach. A fuzzy variable is often (especially in
control engineering applications) an artificial construct. The original variable
is a crisp, metric variable and it is secondary fuzzified. There are no problems
with this kind of fuzzy variables. They may be considered for structure identifi-
cation as crisp variables, especially if their quantification corresponds with the
number of primary fuzzy sets used for their fuzzification. (For recommendations
concerning quantification see [10]).

Their membership functions are usually estimated from empirical data with
help of some clustering method (algorithms as ISODATA, fuzzy C-MEANS
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etc.), or an algorithm finding the ”natural“ number of clusters may be applied
[11].

Let us note, that selected fuzzy sets have to satisfy the condition of e-
completnes. The union of their supports should cover the relevant universes in
relation to some level set €. This level corresponds with membership degree in
crossover points of neighbour membership functions. (The level of the crossover
point is usually chosen greater then 0.5). Crossover points coincide with bound-
aries among individual cells of the state space. Having crossover points, we have
also the partition of the state space. Among crossover points (in the specific
cell of the state space) a dominant rule always exists (fig. 2). These intervals
may be considered as quantising levels of a relevant crisp variable and we can
determine frequency of occurrence and calculate necessary entropies in the same
manner as for crisp variables.

There are variables that have to be considered as fuzzy variables in their
nature. The data available are as variable v, on table 1. Here a little different
approach must be applied.

Let the standard probability space be (2,K,P). Here Q is a sample space, K
is the complete o algebra of a subsets of the €2, and P is a probability measure.
For the fuzzy event F' with the membership function pp(w) we obtain according
to [12] for the probability

PF) = [up@dP  pp(@):2-(©1) . (6)
J :
If we have a discrete sample space Q = {wy,wy, . ..,wy }, then the probability
will be:
P(F) = Zup(w;)P(w =wj) . (7)
i=1

This is summation of probabilities P(w = w;) multiplied by the degree to
which w; belong to the fuzzy event F. In realistic situations the probability is
estimated by the category frequency of w; and we obtain the relative pseudofre-
quency of the event F as an estimate of the probability of the fuzzy event. The
absolute pseudofrequency is a sum of all degrees of membership of elementary
events belonging to one fuzzy set. E. g. for w; and the fuzzy set A

n

N(w) =Y ph(wr) -

i=1

Normalization with respect to the sum of all absolute pseudofrequencies
provides a relative pseudofrequency as an estimate of the probability of a fuzzy
event. To estimate the multidimensional probabilities it is necessary to ag-
gregate relevant states. The membership degree of an aggregated state is de-
termined from ”marginal“ memberships with help of an aggregation function.
There are many possible aggregation functions {3]. We use a product for com-
puting membership degree of aggregated state. Obtaining all necessary pseud-
ofrequencies we can calculate relevant entropies and mean mutual information.



Figure 1: Areas corresponding to relevant rules

According to [13] it is also possible to use the x? test for fuzzy data. Let us
consider that P(z) is assumed to be a theoretical probabilistic distribution.
Let II(k) be: *‘

(k) = | s(2)dP(a) - (8)

This is Zadeh’s distribution induced by theoretical distribution P(z) on the
k-th fuzzy set with membership function p,(z), defined on the universum z.
~v(k) are experimental pseudofrequencies for the fuzzy sets k = 1,2,...,m and
n is the number of measurements. In [12] it is proven that the statistics:

L NS (0
3 [x( )nII(k)( T (9)

k=1

has an approximate x? distribution with r — 1 = v, where r is a cardinality
of X.

From these relations follows that there are no principal restrictions in the
extension of the presented method for fuzzy data. We deal with pseudofrequen-
cies instead of frequencies and we obtain estimates of probabilities as well as
for crisp data.

4 Search for rules

Now we have the state space of the controller partitioned on cells and we can
assign appropriate outputs to the individual cells and form rules. Due to the
overlapping of the neighbour fuzzy sets and due to uncertainties in measure-
ment, the assignment of the appropriate output to the specific cell is ambiguous.



It is natural to select as a rule the most frequented coincidence between spe-
cific cell and specific output. It leads to the multidimensional histogram or

i) |

histogram depicting the pseudofrequencies.
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Figure 2: A simple control system for demonstration of the method

A technique can be shown with help of the following example. A simple

0.8+0.36s

control system according to fig. 2 has been simulated.

Table 4: Frequencies of coincidences between cells and output values for esti-

mation of the rules

cell abs. freq. rel. freq. rule
e(k) [Ae()) [NJZ]P] | N ] Z | P
N N 181 0| 0 | 1.00[0.00)000]) P
N Z 40| 5 | 0 |0.89]0.11]0.00| P
N P 2180 (02/{080 000} Z
Z N 51141 0 |[0.26 | 0.74 | 0.00 || Z
Z Z 0 {34| 3 |0.00]092]|0.08| Z
Y/ P 0|69 |000]0401{0.60 Z
P N 0|63 |000;067|033| Z
P Z 0|6 ]32]000[016]0.84| N
p P 0|0} 9 (000]|000]|1.00] N

A conventional PD controller has been used and the system was stimulated

by the white noise.

The sampled corresponding inputs and outputs of the
controller have been stored. The data set consists of 1000 samples of input
and output. Analysis of the mask showed, that for y(k) we need e(k) and
e(k —1). The variables y(k), e(k) and e(k) — e(k — 1) were quantised into three
levels (assigned with linguistic terms ”positive” =P, ”zero“=Z, ”negative“=N).
Frequencies of coincidences between cells and output are in the table 4.
Choosing the most frequented rule as a typical rule for the specific cell of
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the phase space, we obtain the following rule base, table 5.

Table 5: Final form of the rule base

Ae
N[Z]P
N{P|P!|Z
el ZWZ|Z |2
PIZ|{N|[N

5 Conclusion

The method submitted enables to find the control rules if any controller able
to control a given system exists. For instance, if an expert who can control the
given system exists, but is unable to formulate the rules explicitly. The method
is important especially in situations where more complicated controllers are
applied, a little information on dynamical properties of controlled system is
available and measurements are indirect and noisy. For instance by the control
of biotechnological processes connected with water purification. The method
has little significance for the design of fuzzy PI, PD, PID controllers. This is
the domain of the template based methods.

Having all relevant variables after the structure identification, the neural
nets approach may be used for finding the rules and the membership functions..
Nevertheless a simple method for the choice of rules on the base of their fre-
quency ( or pseudofrequency) provides information on statistical properties of
the training set if it contains data corresponding with all necessary states. Us-
ing neural nets, these properties are usually not known, what leads sometimes
to erroneous results.
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