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Abstract

We show that (and how) difference posets are isomorphic to orthoal-
gebras. As a corollary, we find a characterization of orthomodular lattices
and Boolean algebras in terms of a difference operation. The results are rel-
evant to the logico-algebraic foundation of quantum mechanics. (It should
be noted that the manuscript form of this paper has circulated among in-
terested readers for a longer time. As a result, the contents of this paper
has been referred to in numerous papers, notably in the papers [7, 4, 11].)

1 Introduction

When we deal with a complemented poset we usually derive the difference opera-
tion (of comparable pairs) as a secondary notion. Taking the difference operation
as primitive and imposing certain natural conditions on it, we obtain a difference
poset. As it turns out, difference posets enjoy conceptual merits which might be
utilized in quantum axiomatics and in the study of observables — see [11], see also
[9], [12]). In this note we point out an explicit relationship of difference posets
with structures already established in the foundation of quantum mechanics —
with the orthoalgebras (see [6], [8], [10], [13], etc.). As a main result (Th. 2.11),
we find a description of an orthoalgebra in terms of a difference operation on
a poset. Using this description, we further obtain a characterization of ortho-
modular posets, orthomodular lattices and Boolean algebras in a difference poset
setup.

2 Notions and results

Let us start with a basic notion of this paper (see also [11]).

Definition 2.1 : Let (S, <) be a partially ordered set and let S possess a least
and a greatest element, 0, 1. Let © be a partial binary operation on S such that
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b S a is defined if and only if a < b. Then (S,0,1,<,0) is called a difference
poset (a DP) if the following conditions are satisfied:

(dpl) Foranya€ S, a0 0=a.
(dp2) Ifa<b<c¢, thencob<cOaand (c0a)o(cOb) =b6a.

In what follows, we shall often use S instead of (5,0,1,<,©) if there is no
danger of misunderstanding. Typical examples of DPs are as follows.

Example 2.2 : Let V be an ordered linear space and let f be a positive element
of V. Put V; = {g € V |0 < g < f}. Then V; becomes a DP. In particular, the
interval [0, 1] of real numbers is a DP.

Example 2.3 : Let X be a set and let exp X denote the set of all subsets of X.
Let A be a subset of exp X that contains X and that is closed under the formation
of the set-theoretic difference of the sets which are in the inclusion relation. Then
A with < being the inclusion relation and & being the set-theoretic difference
forms a DP.

Example 2.4 : Suppose that (S,0,1,<,’) is an orthomodular poset (see e.g.
[12]). If we put, for a,b € S such that a < b, b©a = bAd/, then S becomes a
DP.

Example 2.5 : Let F be a collection of functions f : X — [0, 1] which fulfils
the following properties:

1. the constant unit function 1 belongs to F',
2. if f,g,€ F, f <g,theng— f € F.

Then F with © defined as the pointwise difference of functions is a DP. The latter

DP plays an essential role in the quantum axiomatics based on fuzziness (see e.g.
[2], 3], [5], etc.).

Definition 2.6 : Let S,T be two DPs. A DP morphism is a mappinga : S =T
such that (i) a(1) = 1, (i) if a,b € S with a < b, then a(a) < «a(b) and
a(be a) = a(b) © afa).

As one can check easily, the class of DPs with the DP morphisms forms a
category (see e.g. [1] for the category theory terminology). We shall denote the
latter category by 22°.

Our intention in this note is to find a link of DPs with orthoalgebras. Let us
first recall the definition of an orthoalgebra (see e.g. [8]).
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Definition 2.7 : Let K be a set containing two distinguished elements 0, 1 and
let K be endowed with a partially defined binary operation @ which satisfies the
following four conditions (a,b,c € K):

(0cal) If a® b is defined, then b & a is defined and a ®b=>b D a.

(0a2) Ifb®c is defined and a® (b®c) is defined, then a®b is defined, (a®b) D¢
is defined and a® (b®dc) = (a®b) D c.

(0a3) For every a € K there ezists a unique b € K such that a ® b is defined and
a®b=1.

(0oad) If a @ a is defined, then a = 0.

Then (K,0,1,@®) is called an orthoalgebra (an OA).

In what follows, we shall often use K instead of (K,0,1,8) if there is no
danger of misunderstanding. It should be noted that orthoalgebras have been

found a useful tool in the pursuit of quantum mechanical constructs (see e.g. [6],
[13], etc.).

Definition 2.8 : Let K, L be two orthoalgebras. Then a mapping 8 : K — L is
called an OA morphism if (1) 8(1) = 1, (i) if a,b € K and a © b exists, then
B(a) @ B(b) exists in L and B(a @ b) = B(a) & B(b).

It can be shown easily that OAs with OA morphisms form a category. Let us
denote this category by 6.4

In what follows, we shall be interested in the connection of DPs and OAs.
The point of departure is the following observation.

Proposition 2.9 : Let (K,0,1,®) be an orthoalgebra. Let us define a relation,
<, and a partial binary operation, O, in K as follows: For a,b € K, we seta < b
if and only if there is a ¢ € K such that b= a @ c, and in the latter case we put
boa=c. Then (K,0,1,<,0) is a difference poset.

Proof. One first has to check that the above defined relation < is indeed a partial
ordering making 0 and 1 a least and a greatest element. This has been done in {8].
(In fact, only the antisymmetry of < needs to be verified, the other properties are
obvious. Suppose that a < b and b < a. Then there are elements c,d such that
b=a®c,a=bdd Wehavea= (a®c)dd=ad(cdd) =a®(cDd)® (cDd).
By (0ad), c® d = 0. Thus, ¢ = d = 0 and therefore a = b.)

Let us now verify the axioms of a DP for (K0, 1, <,8). Suppose that a < b.
Thus, b = a ® c and therefore b© a is defined and b&a = c. Let a € K. We have
to prove that a©0 = a. This is equivalent to proving that a = a®0. To this end,
observe first that 1 = 1 ® 0. (Indeed, according to (0a3), there is a b € K such
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that 1 =1®b= (10b)db= 1 (bdd). By (0a2), bdb is defined and, by (oa4),
b=0.) Let c€ K satisfy cda=1. Then c® (a®0) = (c®a)d0=100=1
and, by (0a3), a ® 0 = a. Further, let us suppose that a < b < c¢. Thus,
b=a®dand ¢ = b® e. This means that ¢ = a ® d ® e. It follows that
(coa)O(cob) =(d®e)Oe=d=>b6a and the proof is complete. U

Theorem 2.10 : The category O is a full subcategory of 9.

Proof. By Prop. 2.9, every OA can be naturally viewed as a DP. Suppose that
K, L are OAs and suppose further that 8 : K — L is an OA morphism. Then,
obviously, 3(1) = 1. If a < b, we have a @ ¢ = b for some ¢ € K. Thus, B(a) &
B(c) = B(b) and therefore B(a) < B(b). Moreover, the equality 3(a)® B(c) = 5(b)
reads 6(c) = B(b© a) = B(b) © B(a). Thus, § is a DP morphism for K, L if K, L
are understood as DPs. On the other hand, suppose that K, L are understood as
DPs and o : K — L be a DP morphism. Obviously, (1) = 1. If a® b = ¢, then
a = cob. Tt follows that a(a) = a(c) © a(b) and therefore a(c) = afa) ® a(b).
Thus, « is an OA morphism and this completes the proof. [

A natural question now arises of which DPs can be given an orthoalgebra
structure. Let K be a DP. Let us say that K is regular if it satisfies the following
condition: If a € K and a < 1 6 a, then a = 0. Let us denote by 24,4 the
category of regular DPs. (Prior to the next result, let us observe that a DP does

not have to be regular. In fact, none of the examples V; (Ex. 2.2) is a regular
DP.)

Theorem 2.11 : Let (K,0,1,<,0) be a regular DP. For any a,b € K with
b<1loa, pta®b=16[1Sa)ob. Then (K,0,1,&) becomes an OA. A
corollary: The categories O and D P, are isomorphic.

Proof. Prior to verifying the axioms for an orthoalgebra observe that b6 (bSa) = a
for any a,b € K with a < b. Indeed, b&a < b (from the definition of ©) and, by
(dp2), be (boa)=(b60)& (bSa)=a0=a.

Ad (0al): Suppose that a @b is defined. This occurs exactly when b < 1S a.
Then 16b > 16 (1684a) = a. Observe now that (16a) ©b = (16b)©a. Indeed,
making use of the axioms of a DP we obtain (16a)©b=(16a)0[16(10b)] =
(16b) ©a. Applying the latter equality, we infer that a®@b =16 [(1ea)ob) =
1o[(leb)ea =bda.

Ad (0a2): Suppose that a @ (b c) is defined. Using (oal), we obtain

aEB(bEBc):(b@c)@azl@[(l@(b@c))@a]:
1e{lle[le((lebocea=10[((10b)6c)Od =

1e[(leb)oa)od=0b®a)®c=(add) dc.
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Ad (0a3): Suppose that a € K. If we put b = 1S a, we obtain a @b =
1e[1ca)ob=16(0b6b) =160=1 Wesee that for b =16 a we have
a@® b = 1. Suppose on the contrary that a ® b =1 for an element b € K. This
means that 16 [(1©a)©b] = 1. It follows that 16[1© ((1©a)0b)|=161=
(160)6(160) =060 = 0. We infer that (1 ©a) ©b = 0 and therefore
loa=(1oa)e0=(10a)6((1©a)ob)=0.

Ad (0ad): Suppose that a & a is defined. It follows that a <16 a. Since K
is supposed regular, we infer that a = 0. The proof is complete. U

If K is DP, we can also view it as a poset with a complementation if we endow
it with a unary operation ’ defined by putting ' = 18 a (a € K). Then Th. 2.11
above implies: (K,0,1,®) is an orthoalgebra (with a®b = 10[(1©a)©}]) if and
only if (K,0,1,<,’) is an orthoposet. (Recall that a bounded poset (K,0,1,<,")
is called an orthoposet if / is an involutive antiisomorphism such that a V a =1
forall a € K.)

In our next result we find conditions for a DP to become an orthomodular
poset, an orthomodular lattice, or a Boolean algebra. This result may be useful
in the logico-algebraic foundation of quantum theories, or elsewhere. (The proofs
are easily available from Th. 2.11 above, Th. 2.11 of [8] and the rudiments on
orthomodular posets (see e.g. [12])).

Theorem 2.12 : Let K be a regular DP and let ' denote a unary operation on
K such that, for anya € K, d' =16a.

1. K is an orthomodular poset if and only if the following condition (OP) is
fulfilled: If b < 1© a, then the supremum a V b ezists in K and equals
16[(1©a)©b]. A corollary: The full subcategory of DP,eq consisting
of ezactly those objects that fulfil the condition (OP) is isomorphic to the
category of orthomodular posets.

2. K is an orthomodular lattice if and only if it is a lattice. A corollary:
The full subcategory of DP,., consisting of ezactly those objects that are
lattices is isomorphic to the category of orthomodular lattices with the OA
morphisms.

9. K is a Boolean algebra if and only if the following condition (B) is fulfilled:
For any pair a,b € K there is a triple e, f,g € K suchthate <16 f, f<
16g, g<16Ge and f =aSe, g=>bOe. A corollary: The full subcategory
of DP,c, whose objects fulfil (B) is isomorphic to the category of Boolean
algebras.

Let us note in conclusion of this note that the isomorphism of regular DPs
and OAs allows us to unify the investigation of states and observables in OAs.
Indeed, if K is an OA and if K is viewed as a DP, then a state on K may be
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identified with a DP morphism of K into V; (see Ex. 2.2) and an observable on
K may be identified with a DP morphism from #(R) into K, where #(R) is
the Boolean algebra of Borel subsets of R (see [11]). Thus, both a state and an
observable can be associated with the same mathematical entity. This might help
in their description and investigation.
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