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OnN FITTING OPERATIONS
Radko Mesiar, STU, Radlinského 11, 813 68 Bratislava, Slovakia

Abstract The structure of fitting operations with respect to a given
triangular norm is investigated. A special attention is paid to the case
of basic t-norms. The connection between fitting property and Lipschitz

property is stressed. Some examples are given.
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1. Introduction

Several types of of many-valued logics on the unit interval [0,1] can be
derived by means of triangular norms. Given a left-continucus t-norm T,
the basic notion of a residhated lattice can be built up [3,7],
including the residuation and biresiduation operators. Here the t-norm T
plays the role of a conjunction, the corresponding residual operator IT
corresponds to an implication and the biresidual operator ET models the
equivalence. For practical purposes, often several other operations on
the residuated lattice should be introduce. It is natural to require
that they fit with the underlaying biresiduation (equivalence) - such
operations are called fitting (T-fitting) operations [7]. The aim of
this paper is to investigate the structure of fitting operations

especially with respect to the basic triangular norms.
2. Preliminaries and basic properties

Let T be a left-continuous triangular norm [5,8], i.e. T is a
left-continuous [0,1]2—»[0,1] commutative, associative, non-decreasing
mapping such that T(x,1) = x for all x € [0,1]. The associativity of T

allows to extend it to be an n-ary operation, n =z 3, too, namely

T(xl,...,xn) = T(T(xl,...,x ), x )

n-1 n

If x = ... =x = x , we put T(xv...,x ) = x“ﬂ (if no confusion with
n n .

respect to the t-norm we are dealing with can occur).



We recall some basic triangular norms:

- minimum TH(x,y) = min (x,y) ;

- product Tp(x,y) = Xy ;

- Lukasiewicz t-norm Tl(x,y) max (0, x+y-1) ;

- the weakest t-norm T}(x,y) 0 whenever max (x,y) < 1.
Note that up to the weakest t-norm 1% all introduced t-norms are
continuous and hence left-continuous. An example of a non-continuous

left-continuous t-norm is the Fodor t-norm TF,

TF(x,y) = {
0 otherwise

An important role in the t-norm theory play the triangular norms with

min (x,y) if x+y > 1

additive generators. As far as the left-continuity of a t-norm T
possessing an additive generator f implies immediately its continuity
[4], we will deal with continuous additive generators only.

Let f:[0,1]1—[0,o] be a continuous strictly decreasing mapping such that

f(1) = 0. Then f generates a t-norm T via
T(x,y) = £ (min (£(0), f(x)+f(y)))

Note that the product t-norm TP is generated by an additive generator
f}(x) = -log x , while the Lukasiewicz t-norm TL is generated by an
additive generator fL(x) = 1-x . Each t-norm generated by an unbounded
continuous additive generator f is isomorphic with the product t-norm
and it is called a strict t-norm. Similarly, each t-norm generated by a
bounded continuous additive generator is isomorphic with the Lukasiewicz
t-norm and it is called a nilpotent t-norm. Additive continuous
generators are determined uniquely up to a positive multiplicative

constant, not influencing any property of the corresponding t-norm.

For a given t-norm T, the residual implicator IT is a [0,1]2—»[0,1]
mapping defined via [1,2,3,7]
IT(x,y) = sup (z; T(x,z)=y)

Note that the property IT(x,y) = 1 if and only if x = y is fulfilled
for left-continuous t-norms (in fact, the border continuity of T is a
necessary and sufficient condition)and therefore we will deal with left-
continuous t-norms in what follows only. For the basic t-norms we have

the following residual implicators:
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1 if x=y
{ (Goedel implication) ;

- for T: I (x,y)
M M .
y otherwise

1 if x=y
{ (Goguen implication) ;

- for TP: IP(x,y)
y/x otherwise

- for TL: IL(x,y) min (1,1-x+y) (Lukasiewicz implication)

For a t-norm T generated by a continuous additive generator f, the
corresponding residual implicator is defined via

I(x,y) = £ (max (0,£(y)-(x)))
For more details about residual implicators we recommend [1].

For a given t-norm T, the biresidual operator ET is a [0,1]2—9[0,1]
mapping defined via

ET(x,y) = min (IT(x,y),IT(y,x))

Note that the minimum in the above definition can be replaced by an
arbitrary t-norm with no influence (as far as at least one of arguments

is equal to 1). Further, we have also

ET(x,y) = IT(max(x,y),min(x,y)) .
We recall basic biresidual operators corresponding to the above introdu-

ced basic t-norms:

1 if x=y
- 'Eu(x,y) = { ;
min(x,y) otherwise
- Ep(x,y) = min(x,y)/max(x,y) = exp(-|log x - log y|) ,

where 0/0 = 1, resp. w-o = 0 ;

- Elxy)=1- |x-y|

If T is generated by a continuous additive generator f, then

E(x,y) = £ (|fO)-f(y)])
Now, we are able to introduce the notion of a fitting operation,see [7].

Definition 1 Let K:[0,1]"—I[0,1]1 be some n-ary operation for n € N. Let
T be a left-continuous t-norm. We say that K is a T-fitting operation if
there exist integers k1""’kn € N such that for arbitrary elements a .

..,a,b,...,b € [0,1] we have
n 1 n
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(k) (k)
T(ET(a1’b1) 1 ,...,ET(an,bn) n) = ET(K(al,...,an),K(bl,...,bn)) (1).

3. Basic properties of fitting operations

In this section, we give some general properties of fitting operations.

The monotonicity of T ensures the validity of the next proposition.

Proposition 1 K is a T-fitting operation if and only if there is k € N
such that inequality (1) holds with k1=...=k =k
n

For n-ary operations defined by means of some associative binary

operation K we have the following result.

Theorem 1 Let K be an associative binary operation on the unit interval
and let Kn, n=2,3,..., be the corresponding n-ary operation (i.e. K=K2).
Let T be a given left-continuous t-norm. Then K is a T-fitting operation

if and only if all Kh’ n=2,3,..., are T-fitting operations.

Proof. It is enough to show that if K is T-fitting then also K.3 is
T-fitting (and then the rest of the proof follows by induction). Suppose
that K is T-fitting and let k € N be the corresponding constant from
Proposition 1. Then

= =
ET(KS(a1,a2,a3),Ka(bl,bz.ba)) ET(K(K(al.az),as),K(K(bl,b?_),bs))

(k)

(k)
T(ET(K(a1’a2)’K(b1’b2)) ’ET(as’bs) ) =
(k) (k)4 (k) k), _
T(T(Et(a1’b1) ’Er(az'bz) ) ,ET(as,bs) ) =
(kz) (kz) (k)
T(ET(a1’b1) ’Er(aa’bz) ’Er(as'ba) ),

and consequently K3 is a T-fitting operation (with constants k1=k2=k2
and k3=k) . o

Now, we are able to show that for each left-continuous t-norm T, both T
and TH are T-fitting operations (otherwise the concept of fitting opera-

tions wouldn’t be sound).

Theorem 2 Let T be a left-continuous t-~norm. Then T, TH and all their

n-ary extensions, n=2,3,..., are T-fitting operations.
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Proof. Due to Theorem 1, it is enough to show that T as a binary
operation on the unit interval is a T-fitting operation with k=1 (see
Proposition 1).

Let a =b and a_=b_. Put u=E (a ,b ) and v= E (a ,b ). Then

11 27 2 T 1’ 1 T 2 2
T(bl,u)=a1 and T(bz,v)=a2 and consequently due to the associativity of T
we have T(al,a2)=T(T(b1,b2),T(u,v)). It follows that

T(u’V)SET(T(a1’a2)’T(b1’b2)) proving the inequality (1) for this case.

Similar is the case a 2b and a =b .
1 1 2 2

Now, let a.lsb1 and a.zzb2 and let u and v be defined as above. Then
T(bl,u)=a1 and T(az,v)=b2 . Suppose that T(al,az)sT(bl,bz) (the opposite

inequality can be treated similarly). Then using the same arguments as

in the first case, we have T(u,v)SET(T(al,bz),T(bl,az))=z . Now,
T(T(bl,ba),Z)ST(T(bl,az),z)=T(ar,b2)sT(al,a2) ensures the result.

Indeed, T(u,v)SZSET(T(al,aZ),T(bl,bz)) proves inequality (1).
Using similar arguments, the rest of the proof for T and the statement

for Tn can be shown. [m]

For a given left-continuous t-norm T, the mapping nT:[0,1]—+[0,1]
defined by n&(x) = IT(x,O) is a T-negation. it is easy to see that n_ is

decreasing and that nT(l) = 0, nT(O) = 1.

Theorem 3 Let T be a left-continuous t-norm. Then the corresponding

T-negation n_ is a T-fitting operation.

Proof. Without any loss of generality, we can assume a<b and then n_ is
T-fitting operation whenever IT(b,a)SIT(IT(a,O),IT(b,O)). Put z=IT(b,a),
u=IT(a,O) and v=IT(b,O). Then T(b,z)=a, T(a,u)=0 and consequently
0=T(a,u)=T(T(b,z),u)=T(b,T(z,u)) and thus T(z,u)=v. But then zSIT(u,v),
q.e.d. a

4.Unary fitting operations

In this section, we will investigate unary fitting operation. Especially
important is the problem of fitting negations, i.e. decreasing mappings

on the unit interval mapping 1 into 0 and vice versa.
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i) TH—fitting unary operations:

K:{0,11—[0,1] is TH-fitting only if for all a, b e [0,1] it is
En(a,b)SEH(K(a),K(b)). If a=b then the last inequality is obviously
fulfilled. Without any loss of generality, we may suppose that a<b, i.e.
aSEM(K(a),K(b)). This means that either K(a)=K(b) or min (K(a},K(b))za .
Then if K(a)<a, we have K(b)=K(a) for all bza. For x € lK(a),al then
K(a)<x5EH(K(x),K(a)) requires K(x)=K(a). Consequently, K is Ih-fitting
if and only if K(x)zx for all x=u = inf (z;K(z)<z) and K(x)=u for all
x>u. This means that the only TH—fitting negation is Jjust the

T -negation n, n (x)=0 for all x>0 .
M M M

ii) TL—fitting unary operations:
K is TL—fitting if and only if there is k € N such that for all a, b €
[0,1] it is (1-|a-b|ﬂk)5 1-|K(a)-K(b)|. The last inequality is
equivalent with the Lipschitz property

|K(a)-K(b) |=k|a-b| .
Recall that a real function K fulfills the Lipschitz property if there
is some positive constant ¢ such that for all x, y from the domain of K
it is |K(x)-K(y)| = c|x~y| .
Hence K is TL—fitting if and only if K fulfills the Lipschitz property.
If K is differentiable on ]0,1[, then K is TL-fitting if and only if its
derivative K’ is bounded on ]0,1[. Further, the continuity of K is a
necessary condition for K to be TL—fitting (see also [7]). Recall that
the TL—negation n is the usual [0, 1]-valued logic negation, nL(x)=1-x .

and that n is obviously TL-fitting. Note that the negation K(x) =1 - xP

is T -fitting for all p>0, while the strong negation K(x) = (1-x")P is

TL—fitting only when p=1 (and then K=nLL

iii) Tp-fitting unary operations:
K is Tp~fitting if and only if there is k € N such that for all a, b €
[0,1] it is (exp(-|log a - log bl))ksexp(-|log K(a) - log K(b)|) , i.e.
|log K(a) - log K(b)| = k|log a - log b| . Put u=log a and v=log b
Then the last inequality can be rewritten into

|log K(exp u) - log K(exp v)| = k|u - v| ,
i.e. the composite function logoKoexp is Lipschitz on [-»,0]. Hence a
unary operation K is Tp fitting if and only if the composite function

logoKeexp fulfills the Lipschitz property on [-»,0]. Again as in the
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previous case, the continuity of K (up to the point 0) is a necessary
condition for the Tp-fitness. K is 1}—f1tting e.g. if logoKeexp is di-
fferentiable on ]-»,0[ and its derivative is bounded. So, e.g., K(x) =
x¥ is TP- fitting for each p>0. Note that the only Tp—fitting negation

is Jjust the T -negation n =n_.
/ P P M

iv) the case of t-norms with additive generators:

Let f be a continuous additive generator of a t-norm T. Then the unary
operation K is T-fitting if and only if there is some k € N such that
for all a, b e [0,1] it is (£ (|f(a)-£(b) | = (|F(K(a))-F(K(D))]),
i.e.

|[f(K(a))-f(K(b))| = k|f(a)-f(b)]| .

Similarly as in the case of the product t-norm 'l'P the last inequality
means the Lipschitz property of the composite function fol(ot‘-1 on the
range of the generator f. Hence only continuous unary operations K (po-
ssibly up to the point O in thé case of strict t-norms) are appropriate
candidates for T-fitting operations. Note that in the case of strict
t-norm T, the only T-fitting negation is the corresponding T-negation n
=n .

5. Fitting binary operations

The only TH-f'itting triangular norm is Tn itself, while each t-conorm is
TH-f‘itting operation (note that t-conorms are commutative associative
non-decreasing binary operations on [0,1] with O as neutral element, see
[5,8].

Let K:[O,l]z-—)[O,I] be some binary operation. It is TL-fitting if and
only if there is some k € N such that for all a1’a2’b1’b2 e [0,1] we
have TL(1-|a1-b1[,1—|a2—b2|)(k).<. 1 - ll((al,az)—l((bl,bz)l , i.e.

|K(a ,a)-K(b,b)| = k(|a-b | + |a-b_|)

Hence a binary operation K is TL-fitting if and only if K fulfills the
Lipschitz property (for two-place functions). Then the continuity of K
is a necessary condition for TL-fitness (see also [6]) and if K is
differentiable, then the boundedness of the first partial derivatives of
K (6n the open unit square) ensures that K is TL-fitting. Taking into
account the t-norms and t-conorms with continuous additive generators,

then T is TL—f‘itting if and only if the inverse f'1 of the corresponding
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additive generator f fulfills the Lipschitz property. So, e.g., if the
first derivative of £ is bounded on ]o,f(0){, then the corresponding T
is TL—fitting. This is e.g. the case of the product t-norm T;, where
f1(x) = exp (-x) for x € [0,w] and |dfd(x)/dx| = |-exp (-x)| =1 . A
similar claim can be applied to the t-conorms generated by a continuous
additive generator g:[0,1]1—[0,«] (continuous strictly increasing
mapping with g(0) = 0). The corresponding t-conorm S is Il—fitting if
and only if the function g-1 fulfills the Lipschitz property on
10, g(1)[.

Similar is the situation with TP—fitting binary operations and more
generally with T-fitting binary operations, where T is generated by a

continuous additive generator f.

Theorem 4 Let T be a t-norm generated by a continuous additive
generator f. Then a binary operation K:[0,1]2—+[0,1] is T-fitting if and

only if the binary operation Hr[O,f(O)]z—a[O,f(O)] defined via

H(x,y) = fR(£(x), £ (y))
fulfills the Lipschitz property on [0,f(0)]. The necessary condition for
the T-fitness is the continuity of K (possibly up to the case when O €
{x,y} if T is a strict t-norm) while the sufficient condition is the

boundedness of the first partial derivatives of H on ]0,f(0)[ . o

Note that if K is a t-norm (or t-conorm) generated by a continuous
additive generator h, then K is T-fitting if and only if the composite
function fon™' fulfills the Lipschitz property (here f is a continuous

additive generator of T).
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