ON FITTING OPERATIONS

Radko Mesiar, STU, Radlinského 11, 813 68 Bratislava, Slovakia

Abstract The structure of fitting operations with respect to a given triangular norm is investigated. A special attention is paid to the case of basic t-norms. The connection between fitting property and Lipschitz property is stressed. Some examples are given.

Key words biresiduation, fitting operator, implication, residuation, triangular norm

1. Introduction

Several types of of many-valued logics on the unit interval [0,1] can be derived by means of triangular norms. Given a left-continuous t-norm T, the basic notion of a residuated lattice can be built up [3,7], including the residuation and biresiduation operators. Here the t-norm T plays the role of a conjunction, the corresponding residual operator I_T corresponds to an implication and the biresidual operator E_T models the equivalence. For practical purposes, often several other operations on the residuated lattice should be introduce. It is natural to require that they fit with the underlaying biresiduation (equivalence) - such operations are called fitting (T-fitting) operations [7]. The aim of this paper is to investigate the structure of fitting operations especially with respect to the basic triangular norms.

2. Preliminaries and basic properties

Let T be a left-continuous triangular norm [5,8], i.e. T is a left-continuous $[0,1]^2 \rightarrow [0,1]$ commutative, associative, non-decreasing mapping such that T(x,1) = x for all $x \in [0,1]$. The associativity of T allows to extend it to be an n-ary operation, $n \ge 3$, too, namely

$$T(x_1,\ldots,x_n) = T(T(x_1,\ldots,x_{n-1}),x_n).$$

If $x_1 = \dots = x_n = x$, we put $T(x_1, \dots, x_n) = x^{(n)}$ (if no confusion with respect to the t-norm we are dealing with can occur).

We recall some basic triangular norms:

- minimum $T_{y}(x,y) = \min(x,y)$;
- product $T_p(x,y) = xy$;
- Lukasiewicz t-norm $T_{I}(x,y) = \max(0,x+y-1)$;
- the weakest t-norm $T_{W}(x,y) = 0$ whenever max (x,y) < 1.

Note that up to the weakest t-norm $\mathbf{T}_{\mathbf{w}}$ all introduced t-norms are continuous and hence left-continuous. An example of a non-continuous left-continuous t-norm is the Fodor t-norm $\mathbf{T}_{\mathbf{r}}$,

$$T_{F}(x,y) = \begin{cases} \min(x,y) & \text{if } x+y > 1 \\ 0 & \text{otherwise} \end{cases}$$

An important role in the t-norm theory play the triangular norms with additive generators. As far as the left-continuity of a t-norm T possessing an additive generator f implies immediately its continuity [4], we will deal with continuous additive generators only.

Let $f:[0,1] \rightarrow [0,\infty]$ be a continuous strictly decreasing mapping such that f(1) = 0. Then f generates a t-norm T via

$$T(x,y) = f^{-1}(\min (f(0), f(x)+f(y)))$$
.

Note that the product t-norm \mathbf{T}_p is generated by an additive generator $f_p(\mathbf{x}) = -\log \mathbf{x}$, while the Lukasiewicz t-norm \mathbf{T}_L is generated by an additive generator $f_L(\mathbf{x}) = 1-\mathbf{x}$. Each t-norm generated by an unbounded continuous additive generator f is isomorphic with the product t-norm and it is called a strict t-norm. Similarly, each t-norm generated by a bounded continuous additive generator is isomorphic with the Lukasiewicz t-norm and it is called a nilpotent t-norm. Additive continuous generators are determined uniquely up to a positive multiplicative constant, not influencing any property of the corresponding t-norm.

For a given t-norm T, the residual implicator I_T is a $[0,1]^2 \rightarrow [0,1]$ mapping defined via [1,2,3,7]

$$I_{T}(x,y) = \sup (z; T(x,z) \leq y)$$
.

Note that the property $I_T(x,y) = 1$ if and only if $x \le y$ is fulfilled for left-continuous t-norms (in fact, the border continuity of T is a necessary and sufficient condition) and therefore we will deal with left-continuous t-norms in what follows only. For the basic t-norms we have the following residual implicators:

- for
$$T_{\mathbf{M}}$$
: $I_{\mathbf{M}}(x,y) = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{otherwise} \end{cases}$ (Goedel implication);
- for $T_{\mathbf{P}}$: $I_{\mathbf{P}}(x,y) = \begin{cases} 1 & \text{if } x \leq y \\ y/x & \text{otherwise} \end{cases}$ (Goguen implication);
- for $T_{\mathbf{L}}$: $I_{\mathbf{L}}(x,y) = \min(1,1-x+y)$ (Lukasiewicz implication).

For a t-norm T generated by a continuous additive generator f, the corresponding residual implicator is defined via

$$I_{T}(x,y) = f^{-1}(\max(0,f(y)-f(x)))$$
.

For more details about residual implicators we recommend [1].

For a given t-norm T, the biresidual operator $\mathbf{E}_{\mathbf{T}}$ is a $[0,1]^2 \rightarrow [0,1]$ mapping defined via

$$E_{T}(x,y) = \min (I_{T}(x,y), I_{T}(y,x))$$
.

Note that the minimum in the above definition can be replaced by an arbitrary t-norm with no influence (as far as at least one of arguments is equal to 1). Further, we have also

$$E_{T}(x,y) = I_{T}(\max(x,y),\min(x,y))$$
.

We recall basic biresidual operators corresponding to the above introduced basic t-norms:

$$- E_{M}(x,y) = \begin{cases} 1 & \text{if } x=y \\ & \text{min}(x,y) & \text{otherwise} \end{cases};$$

$$- \quad \mathbf{E}_{\mathbf{p}}(\mathbf{x}, \mathbf{y}) = \min(\mathbf{x}, \mathbf{y}) / \max(\mathbf{x}, \mathbf{y}) = \exp(-|\log \mathbf{x} - \log \mathbf{y}|) \quad ,$$

where 0/0 = 1, resp. $\omega - \omega = 0$;

$$- \quad \mathbf{E}_{\mathbf{L}}(\mathbf{x}, \mathbf{y}) = 1 - |\mathbf{x} - \mathbf{y}| .$$

If T is generated by a continuous additive generator f, then

$$E_{T}(x,y) = f^{-1}(|f(x)-f(y)|)$$
.

Now, we are able to introduce the notion of a fitting operation, see [7].

Definition 1 Let $K: [0,1]^n \rightarrow [0,1]$ be some n-ary operation for $n \in \mathbb{N}$. Let T be a left-continuous t-norm. We say that K is a T-fitting operation if there exist integers $k_1, \ldots, k_n \in \mathbb{N}$ such that for arbitrary elements $a_1, \ldots, a_n, b_1, \ldots, b_n \in [0,1]$ we have

$$T(E_T(a_1,b_1)^{(k_1)},\ldots,E_T(a_n,b_n)^{(k_n)}) \leq E_T(K(a_1,\ldots,a_n),K(b_1,\ldots,b_n))$$
 (1).

3. Basic properties of fitting operations

In this section, we give some general properties of fitting operations. The monotonicity of T ensures the validity of the next proposition.

Proposition 1 K is a T-fitting operation if and only if there is $k \in \mathbb{N}$ such that inequality (1) holds with $k_1 = \ldots = k_n = k$.

For n-ary operations defined by means of some associative binary operation K we have the following result.

Theorem 1 Let **K** be an associative binary operation on the unit interval and let K_n , n=2,3,..., be the corresponding n-ary operation (i.e. $K=K_2$). Let **T** be a given left-continuous t-norm. Then **K** is a **T**-fitting operation if and only if all K_n , n=2,3,..., are **T**-fitting operations.

Proof. It is enough to show that if **K** is **T**-fitting then also \mathbf{K}_3 is **T**-fitting (and then the rest of the proof follows by induction). Suppose that **K** is **T**-fitting and let $\mathbf{k} \in \mathbf{N}$ be the corresponding constant from Proposition 1. Then

$$\begin{split} & E_{T}(K_{3}(a_{1}, a_{2}, a_{3}), K_{3}(b_{1}, b_{2}, b_{3})) = E_{T}(K(K(a_{1}, a_{2}), a_{3}), K(K(b_{1}, b_{2}), b_{3})) \geq \\ & T(E_{T}(K(a_{1}, a_{2}), K(b_{1}, b_{2}))^{(k)}, E_{T}(a_{3}, b_{3})^{(k)}) \geq \\ & T(T(E_{T}(a_{1}, b_{1})^{(k)}, E_{T}(a_{2}, b_{2})^{(k)})^{(k)}, E_{T}(a_{3}, b_{3})^{(k)}) = \\ & T(E_{T}(a_{1}, b_{1})^{(k^{2})}, E_{T}(a_{2}, b_{2})^{(k^{2})}, E_{T}(a_{3}, b_{3})^{(k)}) \; , \end{split}$$

and consequently K_3 is a T-fitting operation (with constants $k_1 = k_2 = k^2$ and $k_3 = k$).

Now, we are able to show that for each left-continuous t-norm T, both T and T are T-fitting operations (otherwise the concept of fitting operations wouldn't be sound).

Theorem 2 Let **T** be a left-continuous t-norm. Then **T**, $\mathbf{T}_{\mathbf{M}}$ and all their n-ary extensions, n=2,3,..., are **T**-fitting operations.

Proof. Due to Theorem 1, it is enough to show that T as a binary operation on the unit interval is a T-fitting operation with k=1 (see Proposition 1).

Let $a_1 \le b_1$ and $a_2 \le b_2$. Put $u = \mathbf{E}_T(a_1, b_1)$ and $v = \mathbf{E}_T(a_2, b_2)$. Then

 $T(b_1, u) = a_1$ and $T(b_2, v) = a_2$ and consequently due to the associativity of T we have $T(a_1, a_2) = T(T(b_1, b_2), T(u, v))$. It follows that

 $T(u,v) \le E_T(T(a_1,a_2),T(b_1,b_2))$ proving the inequality (1) for this case. Similar is the case $a_1 \ge b_1$ and $a_2 \le b_2$.

Now, let $a_1 \le b_1$ and $a_2 \ge b_2$ and let u and v be defined as above. Then $T(b_1,u)=a_1$ and $T(a_2,v)=b_2$. Suppose that $T(a_1,a_2)\le T(b_1,b_2)$ (the opposite inequality can be treated similarly). Then using the same arguments as in the first case, we have $T(u,v)\le E_T(T(a_1,b_2),T(b_1,a_2))=z$. Now, $T(T(b_1,b_2),z)\le T(T(b_1,a_2),z)=T(a_1,b_2)\le T(a_1,a_2)$ ensures the result. Indeed, $T(u,v)\le z\le E_T(T(a_1,a_2),T(b_1,b_2))$ proves inequality (1). Using similar arguments, the rest of the proof for T and the statement

For a given left-continuous t-norm T, the mapping $n_T:[0,1] \rightarrow [0,1]$ defined by $n_T(x) = I_T(x,0)$ is a T-negation. it is easy to see that n_T is

Theorem 3 Let **T** be a left-continuous t-norm. Then the corresponding **T**-negation $\mathbf{n}_{_{\mathrm{T}}}$ is a **T**-fitting operation.

Proof. Without any loss of generality, we can assume a
b and then \mathbf{n}_{T} is T-fitting operation whenever $\mathbf{I}_{\mathsf{T}}(b,a) \leq \mathbf{I}_{\mathsf{T}}(\mathbf{I}_{\mathsf{T}}(a,0),\mathbf{I}_{\mathsf{T}}(b,0))$. Put $z = \mathbf{I}_{\mathsf{T}}(b,a)$, $u = \mathbf{I}_{\mathsf{T}}(a,0)$ and $v = \mathbf{I}_{\mathsf{T}}(b,0)$. Then $\mathsf{T}(b,z) = a$, $\mathsf{T}(a,u) = 0$ and consequently $0 = \mathsf{T}(a,u) = \mathsf{T}(\mathsf{T}(b,z),u) = \mathsf{T}(b,\mathsf{T}(z,u))$ and thus $\mathsf{T}(z,u) \leq v$. But then $z \leq \mathbf{I}_{\mathsf{T}}(u,v)$, q.e.d.

4. Unary fitting operations

for $T_{\mathbf{w}}$ can be shown.

decreasing and that $n_{_{\mathbf{T}}}(1) = 0$, $n_{_{\mathbf{T}}}(0) = 1$.

In this section, we will investigate unary fitting operation. Especially important is the problem of fitting negations, i.e. decreasing mappings on the unit interval mapping 1 into 0 and vice versa.

i) T_{M} -fitting unary operations:

ii) $\boldsymbol{T}_{_{\boldsymbol{I}}}\text{-fitting unary operations:}$

K is T_L -fitting if and only if there is $k \in \mathbb{N}$ such that for all $a, b \in [0,1]$ it is $(1-|a-b|)^{(k)} \le 1-|K(a)-K(b)|$. The last inequality is equivalent with the Lipschitz property

$$|K(a)-K(b)| \le k|a-b|$$
.

Recall that a real function **K** fulfills the Lipschitz property if there is some positive constant c such that for all x, y from the domain of **K** it is $|K(x)-K(y)| \le c|x-y|$.

Hence K is T_L -fitting if and only if K fulfills the Lipschitz property. If K is differentiable on]0,1[, then K is T_L -fitting if and only if its derivative K' is bounded on]0,1[. Further, the continuity of K is a necessary condition for K to be T_L -fitting (see also [7]). Recall that the T_L -negation n_L is the usual [0,1]-valued logic negation, $n_L(x)=1-x$, and that n_L is obviously T_L -fitting. Note that the negation $K(x)=1-x^p$ is T_L -fitting for all p>0, while the strong negation $K(x)=(1-x^p)^{1/p}$ is T_L -fitting only when p=1 (and then $K=n_L$).

iii) T_p -fitting unary operations:

K is T_p -fitting if and only if there is $k \in N$ such that for all a, b \in [0,1] it is $(\exp(-|\log a - \log b|))^k \le \exp(-|\log K(a) - \log K(b)|)$, i.e. $|\log K(a) - \log K(b)| \le k |\log a - \log b|$. Put u=log a and v=log b. Then the last inequality can be rewritten into

$$|\log K(\exp u) - \log K(\exp v)| \le k|u - v|$$
,

i.e. the composite function $\log \circ K \circ \exp$ is Lipschitz on $[-\infty,0]$. Hence a unary operation K is T_p fitting if and only if the composite function $\log \circ K \circ \exp$ fulfills the Lipschitz property on $[-\infty,0]$. Again as in the

previous case, the continuity of K (up to the point 0) is a necessary condition for the T_p -fitness. K is T_p -fitting e.g. if $\log \kappa \cdot K \cdot \exp$ is differentiable on $]-\infty,0[$ and its derivative is bounded. So, e.g., $K(x)=x^p$ is T_p - fitting for each p>0. Note that the only T_p -fitting negation is just the T_p -negation $n_p=n_M$.

iv) the case of t-norms with additive generators:

Let f be a continuous additive generator of a t-norm T. Then the unary operation K is T-fitting if and only if there is some $k \in \mathbb{N}$ such that for all $a, b \in [0,1]$ it is $(f^{-1}(|f(a)-f(b)|))^{(k)} \le f^{-1}(|f(K(a))-f(K(b))|)$, i.e.

$$|f(\mathbf{K}(\mathbf{a}))-f(\mathbf{K}(\mathbf{b}))| \leq \mathbf{k}|f(\mathbf{a})-f(\mathbf{b})|.$$

Similarly as in the case of the product t-norm $\mathbf{T}_{\mathbf{p}}$ the last inequality means the Lipschitz property of the composite function $f \circ \mathbf{K} \circ f^{-1}$ on the range of the generator f. Hence only continuous unary operations \mathbf{K} (possibly up to the point 0 in the case of strict t-norms) are appropriate candidates for \mathbf{T} -fitting operations. Note that in the case of strict t-norm \mathbf{T} , the only \mathbf{T} -fitting negation is the corresponding \mathbf{T} -negation $\mathbf{n}_{\mathbf{T}} = \mathbf{n}_{\mathbf{m}}$.

5. Fitting binary operations

The only T_M -fitting triangular norm is T_M itself, while each t-conorm is T_M -fitting operation (note that t-conorms are commutative associative non-decreasing binary operations on [0,1] with 0 as neutral element, see [5,8].

Let $K: [0,1]^2 \rightarrow [0,1]$ be some binary operation. It is T_L -fitting if and only if there is some $k \in \mathbb{N}$ such that for all $a_1, a_2, b_1, b_2 \in [0,1]$ we have $T_L(1-\left|a_1-b_1\right|, 1-\left|a_2-b_2\right|)^{(k)} \leq 1 - \left|K(a_1,a_2)-K(b_1,b_2)\right|$, i.e.

$$|K(a_1, a_2) - K(b_1, b_2)| \le k(|a_1 - b_1| + |a_2 - b_2|)$$
.

Hence a binary operation K is T_L -fitting if and only if K fulfills the Lipschitz property (for two-place functions). Then the continuity of K is a necessary condition for T_L -fitness (see also [6]) and if K is differentiable, then the boundedness of the first partial derivatives of K (on the open unit square) ensures that K is T_L -fitting. Taking into account the t-norms and t-conorms with continuous additive generators, then T is T_L -fitting if and only if the inverse f^{-1} of the corresponding

additive generator f fulfills the Lipschitz property. So, e.g., if the first derivative of f^{-1} is bounded on]0,f(0)[, then the corresponding T is T_- fitting. This is e.g. the case of the product t-norm T_p , where $f^{-1}(x) = \exp(-x)$ for $x \in [0,\infty]$ and $|df^{-1}(x)/dx| = |-\exp(-x)| \le 1$. A similar claim can be applied to the t-conorms generated by a continuous additive generator $g:[0,1] \rightarrow [0,\infty]$ (continuous strictly increasing mapping with g(0) = 0). The corresponding t-conorm S is T_L -fitting if and only if the function g^{-1} fulfills the Lipschitz property on [0,g(1)[.

Similar is the situation with T_p -fitting binary operations and more generally with T-fitting binary operations, where T is generated by a continuous additive generator f.

Theorem 4 Let **T** be a t-norm generated by a continuous additive generator f. Then a binary operation $K: [0,1]^2 \rightarrow [0,1]$ is **T**-fitting if and only if the binary operation $H: [0,f(0)]^2 \rightarrow [0,f(0)]$ defined via

$$H(x,y) = f(K(f^{-1}(x), f^{-1}(y)))$$

fulfills the Lipschitz property on [0,f(0)]. The necessary condition for the T-fitness is the continuity of K (possibly up to the case when $0 \in \{x,y\}$ if T is a strict t-norm) while the sufficient condition is the boundedness of the first partial derivatives of H on [0,f(0)].

Note that if **K** is a t-norm (or t-conorm) generated by a continuous additive generator h, then **K** is **T**-fitting if and only if the composite function $f \circ h^{-1}$ fulfills the Lipschitz property (here f is a continuous additive generator of **T**).

References

- [1] de Baets, B. and Mesiar, R., Residual implicators of continuous t-norms. Proc. EUFIT'96, Aachen, 1996, pp. 27 31.
- [2] de Baets, B. and Mesiar, R., Metrics and T-equalities. Submitted to J. Math. Anal. Appl.
- [3] Gottwald, S., Mathematical Aspects of Fuzzy Sets and Fuzzy Logic. Vieweg Verlag, Braunschweig, 1993.
- [4] Klement, E. P., Mesiar, R. and Pap, E., Additive generators of t-norms which are not necessarily continuous. Proc. EUFIT'96, Aachen, 1996, pp. 70 - 73.

- [5] Klement, E.P., Mesiar, R. and Pap, E., Triangular norms. To appear.
- [6] Mesiar, R., Fuzzy implications. Proc. EUFIT'94, Aachen, 1994, pp. 1378-1382.
- [7] Novák, V., Fuzzy Sets and Their Applications. A. Hilger, Bristol, 1989.
- [8] Schweizer, B. and Sklar, A., Probabilistic metric spaces. North Holland, New York, 1983.