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TRIANGULAR NORM-BASED ADDITIONS
OF FUZZY NUMBERS
AND PRESERVING OF SIMILARITY

ANNA KOLESAROVA

ABSTRAOT.

In the paper the notions of similar fazsy numbers and preserving of similarity are
introduced. Using of these notions enables to investigate preserving of the type of
fuzsy numbers with respect to the t-norm-based arithmetical operations, especially
in the case of fussy aumbers with unbounded supports. The conditions for preserviag
of similarity of fussy aumbers with unbounded supports with respect to the additions
based on continwous Archimedean ¢-norms are given.
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1. INTRODUCTION

In the beginning we recall the basic notions which will be used throughout the
paper.

A triangular norm (t-norm) T is a bivariate function T': [0, 1) — [0, 1] which is
associative, commutative, non-decreasing, and T(z,1) = z for each z € [0, 1}.

A fuzzy quantity is any fuzzy subset in the universe of real numbers R. A fuzzy
quantity A is represented by its membership function u4: R — [0, 1].

For a given ¢t-norm T, the membership function u AQP of a t-norm-based sum of

fuzzy quantities A, B is defined as follows:

(1) pagn(z) = Jup T (8a(z),B(y)), z€R,
or in the modified form by

(2) paga(z) = i‘éﬁT (Ba(2),pB(2—2)), 2€R

I T is a continuous Archimedean t-norm, i.e., a continuous t-norm with T'(z, z) <
z for each z € (0,1), then there exists a continuous, strictly decreasing function
f:10,1} - [0,00], f(1) =0, such that

T(z,y) = f~" (min(£(0), f(=) + f(¥))), =,y€[0,1],

where f~! is an inverse function of f.
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A function f is called an additive generator of a t-norm T, and it is determined
uniquely up to a positive multiplicative constant. In the case of a continuous
Archimedean t-norm T, the membership function of the sum A ? B is given by

®)  naga(®) =5~ (min (1) (o ma(a)+ S oma(a—2)), s€ .

At the following part of the paper, we will restrict ourselves to fuzzy numbers.

A fuzzy quantity A is said to be a fuzzy number if the membership function u,4 is
continuous and for all a € (0, 1] the corresponding a-cuts A, = {z € B; ua(z) 2 a}
are convex compact sets , and A; = {a},a € R.

The point a € R is called the peak of a fuzzy number A. The set of all considered
fuzzy numbers (regardless of the peak) will be denoted by .A, and the set of all fuzzy
numbers with the peak in the point a by A®.

DEFINITION 1. A fuzsy number B € A® is similar to a fuszy number A € A*
if there exists a mapping ¢,

{(z—b)+a, forz<d

v(z) = { ez —bd)+a, forz2>d,

where §,¢ > 0, such that
pB(z)=paoyp(z), s€R

The fact that a fuzzy number B is similar to a fuzzy number A will be denoted

by B % A, or briefly by B ~ A. The positive number §(¢) will be called a coefficient
of similarity of the left (right) parts of the membership functions up and p4.

The following properties can be easy proved.
PROPOSITION 1. The relation of similarity ~ is an equivalence on the set A.

The class of all fuzzy numbers which are similar to a fuzzy number A will be
denoted by [4].

A crisp real number a can be regarded as a fuzzy quantity with a membership
function
1, forz =a,

Hap(®) = { 0, forz #a.

Using this fact, we can formulate the following statements.

PROPOSITION 2. Let T be a t-norm.
() HA€ A", b€ Rand B = AQb, then B € A** and B %A

(i) Foreach A € A® there exists A° € A° such that A = A° ®a, and 4° ¥ 4.

The fuzzy number A° is determined uniquely.
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COROLLARY 1. If A € A® and B € A%, then
AquBeA'”, and A?B=(A°?B°)ga(a+b),

where A%, B® € A° and A° 6'1? B°% A ?B.
The fuzzy numbers A°, B® are determined uniquely.

Due to these properties we can examine only fuzzy numbers with the peak in
the point zero because it is often simpler.
Note that similarity of fuzzy numbers A, B € A° means that

pa(déz), forz <0,
u(z) =

pa(ez), forz 20,
for some 6,¢ > 0.

2. PRESERVING OF SIMILARITY

If we work with fuzzy numbers of the certain type, it is reasonable to require
their sum to be of the same type, too. This property can be described by means of
similarity.

We can say that the fuzzy numbers A, B are of the same type if they are similar.
Our aim is to find the conditions under which for each 4, B € A, B ~ A, the T-sum
A ? B will be similar to A (and, of course, to B).
DEFINITION 2.
(1) Let A € A. The addition ? preserves A-similarity if for each B € [A] the
t-norm-based sum A ? B also belongs to [A].
(2) The addition ? preserves similarity if it preserves A-similarity for each
A€ A

At first, consider the weakest t-norm Tw which is given by

_ [ min(z,y), if max(z,y) =1
Tw (2,y) = { 0, otherwise.
It is known [8] that in the case of the t-norm Tw, for each A, B € A, it holds:

“A&B(z) = max (pa(2),48(2)), z€R.

Let A € A°. Then for each B € A°, B P A, we get

(2) { pa(6*2), forz<0
2) =
“Ar?;B pa(e*z), forz2>0,

where §* = min(1,§) and ¢ = min(1,¢), which proves that the addition 1@

w

preserves A-similarity. Since this property holds for each A € A%, the addition 1@
w

preserves similarity. And this is precisely the assertion of the following proposition.
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PROPOSITION 3. The addmon based on the t-norm Tw preserves similarity.

Moreover, if A,B € A and B X A, then
A 6 B‘.’t‘

where §* = min(1,§) and € = min(},¢).

From now, let T' be a continuous ¢-norm.
An important continuous t-norm is the t-norm Ty¢, given by

Tu(z,y) = min(z,y), =,y €[0,1].
T is not an Archimedean ¢-norm, it has no additive generator. Therefore we will
examine it separately.
PROPOSITION 4. The addition of fuzsy numbers based on the i-norm T
preserves similarity.

Proof. By Proposition 2, it is enough to prove that for each 4,B € A%, B ~ A4,
thesum C = 4 e B~ A

Let A,B € .A" B% A A, and let A, = [a2,b4], « > 0 be a-cuts of the fuzzy

number 4. Then a-cuts of B have the form

af b
B = [_5_’ —;—] .

For a-cuts Co of the sum C = A 1;0 B it holds Co = Ay + Ba, a > 0. It means
M

that
Co = [(1+%)a:,(1+-1-)b:], a>0.

Therefore C * & A, where

and the proof is over.

0O
We have shown not only that C = 4 e B ~ A, but we have also found the coef-

ficients of similarity, and we can qmckly ﬁnd the result of the addition. Moreover,
let us note that &* is a harmonic average of 1 and §, i.e., §* = (1,8),. The same
holds for €*. This can be useful in the case of a greater number of summands.

We emphasize the obtained result in the following assertion.
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COROLLARY 2. If A€ A%, B € A* and B % 4, then
6 = €
§+1’ T e+l

To illustrate the previous two assertions, consider the following numerical exam-
ple.

EXAMPLE 1. Let A, B be fuzzy numbers with the membership functions :
z-1, for z € [1,2],
pa(z)={ i(4-2), forze(24],
0, otherwise

A®BeA™ and A @ B¢ A, where § =
Ty TM

and
iz, forze€lo,4],

us(z)=( 5—1z, forze€l[4,3],
0, otherwise.

It is only a matter of computation to show that B b A, where § = ; and e = 2.

6‘,('

By Propositions 3 and 2, we get C = Aﬂ@ B X A where§* =1 and e = 2.
M
Since 4 ® B € A%, it holds
T

pﬁ(%(3-6)+2)= % 3-1)» fOl’&’G[].,G],
“C(z) = #A(%("’ - 6) + 2) = %(9 - z)) for = € [6) 9])
0, otherwise.

Now, let T be a continuous Archimedean ¢-norm.
From the assumption that all a-cuts A4, a > 0 of a fuzzy number A are convex
and compact sets, we get lil_'l} p4(z) = 0 and, the same for £ — —co.
L =p=p00

There are two possibilities : either supp A is a bounded set, or supp A is an
unbounded set.

Consider the first possibility : supp A is bounded.

In this case, a fuzzy number A is in fact so-called Left-Right or L—R fuzzy
number. By [2], a fuzzy number A is called an L—R fuzzy number if the values
pa(z) of the membership function can be calculated as follows :

L(s=£), fora—z<z<a,

pa(z)= R(’i—'-), fora<z<a+ph,
0, otherwise,
where a € R, «,8 > 0, and L, R: [0,1] — [0, 1] are the shape functions, which are
continuous, non-decreasing, and L(0) = R(0) =1, L(1) = R(1) = 0.
An L— R fuzzy number A is usually denoted by 4 = (a, a, 8)Lr. The real number
a is said to be a peak of A and a(B) is the left (right) spread of A.

If A is an L—R fuzzy number and B € [4], then B is an L—R fuzzy number
with the same shape functions L and R. Vice versa, every two L— R fuzzy numbers
with the same shape functions L, R are similar. The formal proposition follows.



PROPOSITION 5. 18
(i) Let A = (a,a,8)Lr, B € A* and B ¥ A. Then B = (b,a*, 8*)Lr, where
a® = & ﬂt = E
T €
(i) EA=(a,aB)ir, B = (b,a",B*)ir, then B A, where 6 = %, e = §-.

The proof of this proposition is evident by applying the definitions.
From Proposition 5 follows that the addition ? preserves similarity of L—R fuzzy

numbers iff it preserves the shape functions L, R.

The L— R-shape preserving additions were studied e.g. in [3], [4], [5], [7]. While
the first three papers deal with preserving of linearity, in [7], due to a transformation
principle, the sufficient conditions for preserving of any strictly decreasing shape
functions L, R are given ([7], Theorem 4, Corollary 1).

The notion of similarity does not bring much new for L—R fuzzy numbers, but
it helps to overcome the problems in the case of fuzzy numbers with unbounded
supports.

So, let us examine the second possibility mentioned above, i.e., the fuzzy numbers
with unbounded supports. All conditions and results will only be formulated for
the rigt parts of the membership functions. This can be done because the right
and left parts of a membership function pags are independent. The right part of

the T-sum of fuzzy numbers A and B from A, i.e., the values Pag B(z) for z > 0,

depend only on the right parts of the summands, i.e., on the values u4(z), ua(y)
for z,y > 0. The same holds for the left parts.

So, let A € A° and let supp A be unbounded from above, i.e., pa(z) > 0 for

eachz > 0. Let B % A and T be a continuous Archimedean ¢-norm.
By (3), using similarity B and A, the membership function uc of the T-sum C =
A g B can be expressed as follows :

pe(z)= f? (min (f(O),ina,f’,](f opa(z)+ fopa(e(z— z))))) , 2>0,
or in the form :
(5)  fono(s)=min(F(0) inf (Foua(e)+ ] omalels— D), >0

The addition ? preserves A-similarity (of the right parts) iff for each € > 0 there
exists 7 > 0 such that uc(z) = pa(r2) for each z > 0. In that case, we get

6)  foua(rs) = min (f(ﬂ), . (Fona(e)+f o (s w)))) | 2>0.
Put f o palfo,0) = 9. Then

(7 g(72) = min (f(O), inf ](g(z) + g (e(2 - .1:)))) , 2>0.

z€[0,
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Note that g: [0, 00) — [0, 00] is a continuous, non-decreasing function with g(0) = 0.

We have asked T to be a continuous Archimedean ¢{-norm. Each continuous
Archimedean ¢-norm T is either strict or nilpotent. The following two theorems
will be formulated for strict ¢-norms.

THEOREM 1. Let A € A° and p4s(z) > O for each z > 0. Let T be a strict
t-norm with an additive generator f, and let the addition ? preserves A-similarity.

(i) I the function f o js4lfo,c0) is convex, then
pa(z) = f~Y(az*) for each z >0 and some a > 0,8 > 1.
(3) If the function f o p4lfo,00) i8 concave, then
,uA?A(z) = pua(z) for each 2 > 0.

Proof. (i) By the assumption, T is a strict t-norm, i.e., its additive generator is
an unbounded function. Therefore (7) can be rewritten into the form :

(3) g(rz) = i (9(z) +9(e(2~2))), z>0.

We have used notation g = f o plfo,c0)-

Consider B = A, i.e, ¢ = 1. Denote by r* the number r corresponding in (8) to
€= 1. We get

(9) g(r*z) = [glfl (g(z)+g(2—2)), z>0.

Put h(z) = g(z)+g(2—z), z € [0, 2]. The function h is continouos, convex, h(0) =
h(z) = g(z). Moreover, h is a symmetric function, i.e., h(z) = h(z — 2), z € [0, 2].

Therefore . B 4
nt m@)=h(3) =2(3),

and from (9), we get

(10) g(r*z)=2g (g) , 2>0.

Under given assumptions, the function g is strictly increasing and unbounded. The
number 7* > 1. Define a function u by

u: (0,00) = (-;—,oo), u(s) = 2}:_'.

The function u is a strictly decreasing, continuous bijection. Therefore for r* there

i=2
]

]
exists a unique number s € (0, 00) such that r* = 27 . If we substitute this value

P
to (10), and denote A = 25, £ = ¢, we get

(11) g(At) = X’g(t), t>0.
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It is known [1] that for a given s > 0, the only non-negative, continuous solutions
of the functional equation (11) in the interval (0, co), are the functions g,
g(t)=at’, a>0.

These functions are convex iff s > 1. Using g = f o piaffo,c0) and z = 2¢, we get our
claim.

(i) H the function g = f o p4lfe,c0) i8 concave, then the function h, introduced
in (i), is also concave. Therefore

_inf_h(@) = b(0) = g(2),

and from (9), it follows

(12) g(r*z) = g(2), 2>0.

The equality (12) is true iff 7* = 1, and in that case

mg,.(z) = pa(z), 2>0.

a

H the same assumptions as in Theorem 1, (ii) hold for the left part of the mem-
bership function u,4, then A ? A = A, which means that 4 is an idempotent with

respect to the addition ?

THBOREBM 3. Let A€ A% uy > 0 foreach z > 0. Let T be a strict t-norm
with an additive generator f.

(i) If for each z > 0
pa(z) = f~'(az"),

where a, s are any real numbers, a >0, 8 > 1,
or
(%) if f o palfo,o0) i8 & concave function,
then the addition ? preserves A-similarity of the right parts.

Proof. (i)Let A € A°, B % A,and C = A?B. From (5) and the fact fopus(z) =
az’, z > 0, we get

(13) fopc(z)= [io?f](“. + a€’(2 —' z)'), z2>0.

Put h(z) = ax’ + ae’(z — z)°, = € [0, z]. The function h is differentiable, and its
derivative is given by :

h'(z) = asz*~! + ae’s(z— z)*", z € (0,2).
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The function A is for s > 1 strictly convex, and therefore

oL PE) = (o),

where z, is the point satisfying h'(z0) = 0. It is only a matter of computation to

show that
z

To = ——-_-I
14¢ -1}
H we substitute h(zo) to (13), we get
z'

(14) fouc(z)=a oo z>0.

(1 +¢ -1 )
Denote

1

=‘Y.

(1 + e"-'-i—f)._l

Then (14) can be written in the form :

(15) fopuc(z)=a(v2)’, z>0,
where v is a positive number satisfying the condition

I .
(16) Yy =1=14¢ =1, s>1.
From (13), it follows that

puc(z) = 71 (a(v2)*) = pa(vz), 2>0,

which, by Def.1, means that right parts of C and A are similar and the coefficient
of similarity equals to . This fact will be denoted by Cr < Ag.
The case s = 1 need not be discussed here since it is also included in (ii).

(ii) i the function f o p4lfo,c0) is concave, then, due to similarity B ~ A, f o
13 ko, o) is concave, too. By [6}, for the sum A?B in the case of concave membership
functions, it holds

pagn(z) = max (pa(2), #8(3)).

The assumption B % a implies for z > O the equality up(z) = pa(ez), and
therefore, for z > 0

(17) MA?B(Z) = pa(wz), where w = min(l,e).
The equality (17) means that the addition ? preserves A-similarity of the right
parts and (A ? B)r ~ Ag.

(m

During the proof of the previous theorem we have also obtained the results on
the cofficients of similarity. We stress it in the following assertion.
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COROLLARY 3. Let T be a strict t-norm with an additive generator f. Let
A€ A% us(z)>0forz >0, and let B € A°, Br ~ Ag.
(i) I pa(z) = f~1(az’) for z € (0,00) and any a > 0, s > 1, then

- .
(AGII?B)R A Ar, where vy -1 =14¢ -1,

(%) If f o paljo,c0) i8 concave, then

(A g B)r ~ Ag, where w =min(l,¢).

The analogous properties can be formulated for left sides.

EXAMPLE 2. Let T = T,, where T, is a product ¢-norm given by

T,(z,y) = zy, z,y€[0,1]

The t-norm 7T, is a strict t-norm with an additive generator f, f: [0,1] — [0, 00},
f(z) = —logz. Let A € A® and pa(z) > O for each z > 0. Let f o palfo,00)
be a convex function. By Theorem 1, the necessary condition for preserving of
similarity is

f o pa(z) = —logpa(z) = az’
for some a > 0, s > 1, and all ¢ € (0, 00). It means that 4 has to be of the form

(18) pa(z)=e*".

I u 4 is in the interval (0, co) given by (18), then, for each a > 0, s > 1, by Theorem
2, (i), the sufficient condition for preserving of A-similarity is fulfilled.

Give a numerical example (generalized for both sides). Consider 4, B € A,
pa(z)=e¢*, z€R and pp(z)=e¢"*", z€k.

It is evident that B %’ 4 and s = 2. By Corollary 3 (i),

5 .
C=A$B"ﬂA, where ‘7"2=1+2"2=z, te, 7=
r

Sl

Therefore

pe(z) = pa (%z) = e‘i"z, z €R.

The t-norms in Theorems 1 and 2 were assumed to be strict. The analogous
assertions can also be formulated for nilpotent t-norms. An additive generator f of
a nilpotent t-norm is a bounded function, i.e., f: [0,1] — [0,M], M € R. As it was
mentioned above, the function g = f o ti4lfo,c0) i8 continuous, non-decreasing, and
g(0) = 0. If f is bounded, then g is bounded,too. Since there is no such function g
which would have the named properties and would also be convex, it has no sense
to formulate the conditions of the type (i) given in Theorems 1 and 2.
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THBOREM 3. Let A € A° and u4(z) > 0 for each > 0. Let T be a nilpotent
t-norm with an additive generator f.

(i) If the addition ? preserves A-similarity, and f o 4 ljooo) i8 8 concave func-
tion, then
paga(z) = pa(2), 2>0.

(%) K f o palo,c0) i8 8 concave function, then the addition ? preserves A-

similarity of the right parts.
Moreover, if Br ~ Ag, then

(4 gB)R ~ AR, w=min(l,¢).

EXAMPLE 3. Consider the t-norm T given by
Ti(z,y) = max(z + y—1,0), z,y€[0,1]

The t-norm T, (so-called Lukasiewicz t-norm) is nilpotent, with the normed additive
generator f, f: [0,1] = [0,1], f(z)=1-=.
Consider any fussy number A with a membership function p4, which is convex in
the interval [0, 00). It means that the function f o g4 = 1 — pu, is in the interval
[0, 0) concave. By Theorem 3, (ii), the addition ? preserves A-similarity of the
right parts.

Again, give a generalized numerical example. Consider 4, B € A,

e¥, forz<0,

e %, forz>0

mm={

and
pp(z)=eF-4 zek.

Let B° € A°, upo(z) = eI*l, z € K. It is evident that B° % B, and B, 3E A

By Theorem 3, (ii),
A® B® '™ A, where w; = min(1,3) = 1 and w; = min(1,0.5) = 0.5.
L

Using A®@ BEA*, A® B'% A B°""° 4, we get
Ty T T

u (z) = pa(z—-4)= e"‘ii, for z < 4,
“8° pa(B(z-4) =9, forz>4
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