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1 Introduction

To control complicated technical systems, especially DEDS (discrete event dynamic systems) - like flexible
manufacturing systems, transport systems, communication systems, etc. - a domain oriented knowledge base
(KB) is necessary. It usually expresses control task specifications (like different additional demands, restrictions,
criteria, etc.) that cannot be simply expressed in analytical terms. This paper is devoted to finding a way how
to represent fuzzy knowledge for the DEDS control purposes. It is supported by the author’s works [1]-[5]. Two
different kinds of such a rule-based representation of fuzzy knowlege are presented here. The first approach
utilizes Petri nets and the second one is based on oriented graphs. The approach combining both of them is
pointed out too.

2 The Petri net-based approach to the fuzzy knowledge represen-
tation

2.1 Understanding the Petri nets

Let us understand the Petri net (PN) structure to be the bipartite oriented graph with two kinds of nodes
(positions and transitions) and two kinds of edges (arcs oriented from the positions to the transitions and arcs
oriented in the oposite direction)

(P,T,F,G) ; PNT=0 ; FNG=1~9 (1)

P = {py,...,pn} is a finite set of the PN positions with p; , i = 1, n, being the elementary positions.

T = {t1,...,tm} is a finite set of the PN transitions with ¢; , j = 1,m, being the elementary transitions.

F C P x T is a set of the oriented arcs entering the transitions. It can be expressed by means of the arcs
incidence matrix F = {f;;},i = 1,n; j = 1,m. Its element f;; represents the occurrence of the arc oriented
from the position p; to its output transition ¢;.

G C T x P is a set of the oriented arcs emerging from the transitions. The arcs incidence matrix is
G = {gij},i=1,m; j = 1,n. Its element g;; expresses the occurrence of the arc oriented from the transition
t; to its output position p;.

To represent the PN ”dynamics” (i.e. the marking development) let us consider the quadruplet

(X,U,6,%) ; XNU=0 (2)

where

X = {xo,...,xn} is a set of the state vectors of the PN (the states of the PN marking) with x; =
(0',’,‘1, veny ‘71’;- )¥ ; k = 0, N being the elementary state vectors of the PN in the step k, where k is the discrete step
of the PN dynamics development, and a'j’,f'. , 1 = 1,n is the state of the marking of the elementary positions p;
in the step k. T symbolizes the vector or matrix transposition and N is an integer representing formally the
number of different state vectors (all possible markings) during the PN dynamics development.
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U = {uy,...,un} is a set of the ”control” vectors of the PN (i.e. the state vectors of the PN transitions
expressing the enabling of the transitions) with ux = (4%, ...,f,)7 ; k = 0, N being the elementary ”control”
vectors of the PN in the step k, where 7{". , = 1,m is the state of enabling the elementary transition {; in the
step k.

§: X x U — X is a transition function of the PN.

Xo i8 the initial state vector of the PN.

The different classes of the PN (ordinary PN (OPN), logical PN (LPN), fuzzy PN (FPN), etc.) must be dis-
tinguished as to the ”dynamics” (marking development). For example in case of the safety OPN the transition
function can be analytically expressed in the form of the following linear discrete system

Xk41 = Xp+ Bau; , k=0,N (3)
B = GT-F (4)
Fu < x (5

where

k is the disrete step of the system dynamics development.

Xi is the n-dimensional state vector of the system in the step k. Its components express the states of the
OPN elementary positions. Such a companent acquires its value from the set {0,1} (0 - passivity, when no
mark is present in the corresponding position; 1 - activity, when the mark is present).

u; is the m-dimensional ” control” vector of the system in the step k. Its components represent the enabling
of the elementary transitions. They acquire their values from the set {0,1} (1 - enabling, 0 - disabling).

B, F, G are respectively, (n xm), (n xm) and (m x n)- dimensional structural matrices of constant elements
expressing the mutual causal relations among the positions and transitions. The matrices F, G were introduced
above.

(.)T 0 symbolizes the matrix or vector transposition

However, the LPN and FPN ”dynamics” (defined e.g in [6]) can be uniformly expressed as follows

Xe41 = XporBanduy , k=0,N (6)
B = GTorF (7
Fandup, < x ®)

where

and, or are, respectively, the operator of logical multiplying and additioning. In both the bivalued logic and
the fuzzy one they can be uniformly defined. In scalar case and yields the minimum of the scalar operands
and or yields the maximum of the scalar operands. For vector operands a = (ay, ..., @n)T, b = (b1, ..., bn)T
the operator or yields the vector ¢ = a or b = ((a1 erby), --., (@n 0rbs))T - ie. like in scalar case, however
only for corresponding components of the vector operands. The operator and gives as the result of two vector
operands a, b the scalar d that represents an analogy with the scalar product of two vectors: d = aT andb =
(a1 and by) or... or (a, and by,).

2.2 The knowledge representation

To represent the KB structure - i.e. the rule-based knowledge in the whole - the analogy between the set of
statements (some pieces of knowledge) Si,i = 1,n and the set of the PN positions is made as well as the
analogy between the set of IF-THEN rules R;, j = 1,m and the set of the PN transitions. In addition to this
the mutual causal interconnections among the statements and the rules can be understood to be analogical to
the mutual causal interconnections among the PN positions and transitions. Consequently, the rule

R;: IF (SsandSyandS.) THEN (SiandS.) (9)

can be drawn like the fragment of the PN given on Fig. 1
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Figure 1: The rule R; with the input and output statements

The KB ”dynamics” will be described by the system expressing uniformly both the LPN and the FPN ”dy-

namics”

k41 = xXporBandw , E=0,N (10)
B = GTorF (11)
Fandu; < x (12)

where

xi = (0%,,..,05 )7 ; k=0, N is the state vector of the KB truth propagation in the step k. of,,i=1n
is the state of the truth of the elementary statement S; in the step k. T symbolizes the vector or matrix
transposition and N is an integer representing formally the number of different state vectors occurring during
the KB dynamics development.

u = (7}1, ...,7};_)7 : k = 0, N is the "control” vector of the KB (expressing the rules enabling - or better
the rules evaluability, i.e. the readiness of the rules to be evaluated) in the step k. -yft’. , j =1, m is the state of
enabling the elementary rule R; to be fired in the step k.

and, or are, respectively, the operator of logical multiplying and additioning mentioned above.

The inference mechanism of the statements truth propagation can be analytically expressed as follows

X = ngxp=1la—X: (13)
vi = Flandx, (14)
g = 2e_g_v;=lm—v,,=

= neg(F” and(neg 1)) - (1)

where

neg is the operator of logical negation.

vi i8 a m-dimensional auxiliary vector pointing out (by its nonzero elements) the rules that cannot be
evaluated, because there is at least one false statement among its input statements. This declaration is qualified
only in the analogy with the LPN. In the analogy with FPN any statement is always true with a fuzzy measure.

uy, is a m-dimensional ” control” vector pointing out the rules that have all their input statements true and,
consequently, they can be evaluated in the step k of the KB dynamics development. This vector is a base of the
inference, because it contains information about the rules that can contribute to obtaining the new knowledge.
These rules correspond to the nonzero elements of the vector u;. This is also qualified only in the analogy
with the LPN. In the analogy with the FPN any rule is always evaluable with a fuzzy measure - i.e. it always
contributes to obtaining the new knowledge.
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3 The oriented graph-based approach to the fuzzy knowledge rep-
resentation

Consider the ordinary oriented graph having only one type of nodes and one type of edges (the oriented arcs
among the edges). In order to have a possibility to compare this approach with the previous one introduced
above, suppose that the nodes correspond with the PN positions and the edges include implicitly the PN
transitions (i.e. the transitions are understood to be fixed with the oriented ares) - see Fig. 2. Hence,

(PAY ; PnA=29 , | (16)

where

P = {p1,...,pn} is a finite set of the PN positions with p;, i = 1,n, being the elementary positions.

A C P x P is a set of the oriented arcs among the positions. It can be expressed by the arcs incidence
matrix A = {a;;}, aij , i = 1,n; j = 1,n. Its element a;; represents formally the occurrence of the arc oriented
from the position p; to the position p;.

Because the transitions are defined ”implicitly” and F C P x T and G C T x P we can formally write

ACFxG (1n
or more precisely, the incidence matrix can be derived from the matrix

A=GTFT (18)

3.1 The knowledge representation

To represent the KB the analogy between the KB statements and the nodes of the oriented graph is made. The
KB rules are understood to be fixed with the oriented arcs expressing the causality interconnections among the
statements.

The ”dynamics” of such a KB can be formally defined like the quadruplet

(X, 43,6,%) )

where

X = {xo,...,Xn}, k=0, N is a set of the n-dimensional state vectors x; = (o’§‘, ...,d.)T; E=0,N Of the
KB

Ar = {Aq,..,AN}, k =0, N is a set of the k-variant (n x n)-dimensional matrices Ay = {ak}, E=0,N.
Its element af; = 7}‘15_'5., i=1,n;j = 1,n expresses the causality amonh the statements and the rule (see

F2d
Fig. 2). This element is k-variant. Its value depends on the state of enabling the corresponding rule to be fired.

6§ : X x Ap > X is a transition function of the KB.

xo i8 the initial state vector of the KB.

There exists a relation between the arcs incidence matrix A and the matrix Ag. It consists in the fact
that on the place where the former matrix has nonzero constant element a;; the latter one has the functional
element afj = 753. s In such a k-variant model the states of the KB rules evaluation are "hidden” in the

F1dt

S,' Rs,. S; S 3§
)\
- k k
k
T Sp; TRsis; Ts,

Figure 2: The causality interconnection among two statements

model parameters while the states of the KB statements in the state vector of the KB.
The KB ”dynamics” (or better the transition function) can be expressed in analytical terms as follows

Xp41 = Xior Ag and X; (20)
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however, because of the mentioned implicitness of the PNs transitions in such an analogy with the KB rules, the
inference mechanism (i.e. truth propagation) is also implicitly included into the model. It cannot be explicitly
separated outside of the KB model itself. Hence, we have to form the k-variant model of the KB inclusive of

the inference mechanism. Such a version of the KB model can be writen as follows

Xep1 = xiorGiand(neg (F} and(negx:)))

where the sense of matrices is the following

A; = GiandF{
Gy = {951}3 9,’-‘5 =7§’.m'; j=Lna;r=1m
Fp = {fikr}i «fckr =7i'|s'.; r=1m;i=1n
k - ok k
TReys, = 75,m. 9847,

4 An illustrative example

Consider a simple KB consisting of 6 rules as follows
Ry: IF (S1gndSs) THEN S5 ; Ry: IF S; THEN Ss
Rs: IF S; THENS,; Ry IF S5 THEN Sg
Ry: IF Sy THEN S7; Rg: IF S¢ THEN Ss

The PNs-based model of the KB is given on Fig. 3

Figure 3: The PNs-based representation of the KB

4.1 The PN-based approach

(10000 0Y) (000 00 0)
011000 000000
100000 010000
p_| 0000110 gT=|001000
1000100 E"1100000
0000O0°1 000100
000000 000010
\0 0000 O0) \0 0000 1)

(21)

(22)
(23)
(29)
(25)
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Bivalued logic case: Consider the initial state vector of truth propagation given on Fig. 3.
x = (1,1,0,0,0,0,0,0)7

negxo = (0,0,1,1,1,1,1,1)7
FTQL‘Q(M‘O) = (4L,0,0,1,1, I)T
Ef_g_(FT_a_fli(.fig_xo)) = (0,L,1,0,0, O)T

x = (1,1,1,1,0,0,0,0)7

negxy = (0,0,0,0,1,1,1, 1)
FTand(negx)) = (1,1,1,0,1,0f7

x; = (1,1,1,1,1,0,1,07

Fuszy logic case: Consider the initial state vector of truth propagation to be fuzzy.

xo = (04,0.7,0,0,0,0,0,0)7

negxo = (06,03,1,1,1,1,1,1)T
F7 gnd(negxo) = (1,0.3,03,1,1,1)T
neg (F7 and(negxo)) = (0,0.7,0.7,0,0, 0)7
x = (04,0.7,0.7,0.7,0, 0,0, 0)7

negx; = (0.6,0.3,03,03,1,1,1,1)7

4.2 The oriented graph-Based approach

The corresponding matrices of parameters are as follows

[ 0 0 0 0 0 0 0 0)
0 0 0 0 0 0 00
0 k. O 0 0 0 00
A 0 s 0 0 0 00
k= ﬁ,msl 0 7;',,“,, 0 0 0 00
0 0 7?:,,.3, 0 00
0 0 0 1k, O 0 00
\ O 0 0 0 Theuse 0 0/
(0 0 0 0 0 0\
0 0 0 0 0 0
0 Yy O 0 0 0
of ho 0 i, O 0 0 _
k AT 0 0 0 0 ;
0 0 0 p O 0
0 0 0 0 om, O
\ 0 0 0 0 0 v /
Thass O Yhys, O 0 0 00
0 s O 0 0 0 00
T — 0 b O 0 0 0 00
T 0 0 0 0 Thys, 0 00
0 0 0 ks, O 0 00
0 0 0 0 0 rhs, 00
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Bivalued logic case: Consider the initial state vector of truth propagation given on Fig. 3. Of course, the
full evaluability of rules is supposed (i.e. the values of the functions 7k sis; € {0, 1}).
iS5

Xo
neg xo
F§ and (neg xo)

neg (F{ and(neg xo))

Gj and (neg (F] and(neg xo)))
X3
neg xi

F] and(neyx,)

neg (F] and (neg x1))

G{ and (neg (F and(neg x)))

X2

(1,1,0,0,0,0,0, 07

0,0,1,1,1,1,1,1)7

(haiser 02 0, YRajser TRelser Theise)

(neg TRy 1y L 1 120 Th(5yr 18 ryis0r ML Thetse)” =
©,1,1,0,0,0)7

(0, 0, Wy 1Ras Tou1Rer VosiR, 20 (19 TR, 55): 501, and (meg TRys,)s
73.|R, and (neg TRal5e ) TalRe Qﬂi(ﬁﬂ‘rgds.))"

1,1, 7gaIR:’ 'Yg‘.IR,: 72‘5[1"!1 Qn—d(f_eg‘yghlss)’ 7go|34 g_ﬂ(R_C_g_’Y?:MSS),
1311y ARA(NEG TRy (5, )> V54 1R, a1d (nEG Theise))T =
(1,1,1,1,0,0,0,07

(0,0,0,0,1,1,1, 1)T

(0,0, 0, Thysy» 0s Thise)”

(1, 1, 1, neg vhys,» 1 729 Thys,)” =

(14,1,1,0,1,07

(0, 0, 74, Rys ToulRs» ToelRyr Vool 824 (7€ TR yj5, ),

YiriRar TholRe 204 (neg Thys,))

1,1, 7§,|a,: 7§.|a,: ﬁ,m,» 7§.|R. %d(ﬂﬂﬁhlss)’

YolRer Vool Re 304 (neg Thys))T =

(1,1,1,1,1,0,1,07

Fuzzy logic case: Consider the initial state vector of truth propagation to be fuszy and the full evaluability

of the rules.
Xo
neg o
F and (neg xo)
neg (F7 and (neg xo))

G and (neg (F7 and(negxo)))

X

negx;

(0.4,0.7,0, 0,0, 0, 0, 0)T

(0.6,03,1,1,1,1,1,1)T

(0.6and7d s, 2 1hi5,, 0-30nd 1R, is,, 0-3and 1R s, Thyjse:

Tholse Thelse)”

(neg (0.6 and v}, s, o8 1h,1s,)> neg(0-3and 1g,s,),

neg(0.3and1},15,): neg1Rus» NCITR150> BEI TRalsS) =

(0, 0.7, 0.7, 0, 0, 0)T

(0, 0, 73,1, and(neg(0.3 and},5,)); 13, r, and (neg(0.3 and 7k,js,));
73, \r, and (neg (0.6 and 7R, s, 0F T,)s,)):

1351, 384 (nEG TRyi5,) T37iR, A (neg TRels.) TSolRe and (neg 1h,s,))”
(0.4, 0.7, 73, r, and (neg(0.3 and1%,5,)), 15,17, and (reg(0.3andvR,s,));
734k, and (neg (0.6and % s, 0r1%,s5,))s 13.1r, and (neg TRy s,),

73, 17s a2 (neg Tyy5,) 78, and (neg 1Rys,))T =

(0.4,0.7,0.7,0.7, 0, 0, 0, 0)T

(0.6,0.3,0.3,03,1,1,1, )T
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5 The combined approach to the knowledge representation

Consider the approach combining both the PN-based approach and the oriented graph-based one. In such
an approach a part of the KB will be represented by means of the PN and the remainder of the KB will be
represented by means of the oriented graph. Consequently, the KB structure can be formally described as
follows

(P,T,A,F,G) ; PNT=190 ; FNnG=29 (26)

where

P = {p, ...,pa} is a finite set of the KB statements S;, i = 1,n, being the elementary statements.

T = {t1,...,tm} is a finite set of the KB rules with R;, j = 1,m, being the elementary rules.

A C P x P is a set of the oriented arcs among the nodes of the oriented graph representing the part of
the KB. It can be expressed by the arcs incidence matrix A = {6}, 6; € {0,1},i=1,n;j=1,n. Its
element §;; represents the absence (when 0) or presence (when 1) of the arc oriented from the statement S; to
the statement S;.

F C P x T is aset of the oriented arcs entering the rules (it is concerning the part of the KB represented by
means of the PN). It can be expressed by the arcs incidence matrix F = {fii}, fij € {0,1},i=1,n;j=1m.
Its element f;; represents the absence (when 0) or presence (when 1) of the arc oriented from the input statement
S; to the rule R;.

G C R x S is a set of the oriented arcs emerging from the rules (it is concerning the part of the KB rep-

_resented by means of the PN). The arcs incidence matrix G = {g;;}, 9;j € {0,1},i=1,m; j = 1,n expresses
the occurrence of the arc oriented from the rule R; to its output statement S;.

Hence, the linear discrete dynamic model of the DES can be written as follows

Xi41 = Agndx;orBandu , k=0,N (27
A =L+A (28)
B = GTorF (29)
Fu < x (30)

where

k is the disrete step of the KB dynamics development.

x; = (0% ,..,05 )T ; k=0, N is the n-dimensional state vector of the KB statement truth propagation in
the step k; o’§‘. ,i = 1,n is the state of the truth of the elementary statement S; in the step k (1 - true, 0 -
false).

u = (‘yﬁl, ...,-yfim)T; k = 0, N is the m-dimensional ”control” vector of the KB in the step k (the rules
enabling - i.e. the ability of the rules to be evaluated; 71‘1,. , j = 1,m is the state of enabling the rule R; in the
step k (1 - enabled, 0 - disabled).

A is the (n x n)-dimensional system matrix expressing the causal relations between the statements belonging
to the corresponding part of the KB (that represented by the oriented graph). Its elements represent the states
of enabling the corresponding rules.

B is the (n x m)-dimensional structural matrix of constant elements expressing the causal relations between
the statements and rules concerning the part of the KB represented by the PN. It is given by means of the
matrices ¥, G defined above.

T symbolizes the matrix or vector transposition.

Such a model of the KB utilizes advantages of both the PN-based model and the oriented graph-based one.

5.1 An example of the combined approach

The combined approach is especially suitable for cases where a spontaneous evaluation of some rules is possible.
For example it is the case of two-way implication. Consider the KB as follows

Ry: IF S, THEN S2; Rg: IF Sy THEN S3
Ra: IF S3 THEN 31 H R4: IF Sl THEN 54
Rs: IF Sy THEN S7; Re: IF Sy THEN 5,



Figure 4: The combine representation of the KB

Ry: IF S; THEN Sy ; Rs: IF Sy THEN S;

where the last rules R; and Rg represent the two-way implication. The graphical expression of the KB re-
specting the combine approach is given on Fig. 4
The matrix A is given as follows

10000

01010

A=}100100

01010

00001

The matrices F and G are simplier: n=5 m=6

100100 01000
00100
010000 10000

F=]1001000 G=
00010

000010

000001 00001
10000

Bivalued logic case: Consider the initial state vector of truth propagation to be
x = (0,0,1,0,07

negxo = (1,1,0,1,1)T

FT gnd(negx) = (1,1,0,1,1,1)
neg (FT and(negxo)) = (0,0,1,0,0,0)7

x1 = (1,0,1,0,07

negx; = (0,1,0,1, )T
FT_a_nLi(_rﬂxl) = (0,1,0,0,1, )T

neg (ET and(negx1)) = (1,0,1,1,0,07
x; = (1,1,1,1,07

Fuzzy logic case: Consider the initial state vector of truth propagation to be fuzzy.

x = (0,0,07,0,0)7
negxo = (1,1,03,1,1)T
FT gnd(negxo) = (1,1,03,1,1,1)
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neg (F7 and (negxo)) = (0,0,,0.7,0,0,0)7
(0.7,0,0.7,0, 0)7
negxi (03,1,03,1, )T
FT gnd(negx1) = (0.3,1,03,03,1, 1)T
neg (FT and(negx;)) = (0.7,0,0.7,0.7,0, 07
x; = (0.7,0.7,0.7,0.7,0)T

X1
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