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1. Introduction

Pawlak [4,8] introduced the concept of rough sets.

Since then it has become an attractive area of research in

different fields. Algebraic approach to rough sets was studied by
Iwinski (3]. In (1], Dubois and Prade studied rough fuzzy sets

and fuzzy rough sets. They also suggested some research

directions in the same paper [1].
In the present paper the author introduces the
concept of rough metric spaces and studies several properties and

propositions. The rough metric spaces are not metric spaces in

general; but metric spaces can be regarded as rough metric spaces.

2. Preliminaries

We give below some preliminaries on rough sets.
Definition 2.1
Let U be a non-empty set and B be a complete algebra of the

Boolean algebra P(U) of subsets of U. The rair (U,B) is called a

rough universe.

Definition 2.2

Let V = (U,B) be a given fixed rough universe. Let R be 5

rslation defined as follows :

A= (A BAER iff A, BE B and A = A.
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Then the elements of R are called rough sets, and the elements of
B are called exact sets.

We see that (X,X) is a rough set VX & B. Thus in this
sense of idnetification an axact set can be viewed as a rough

set. But a rough set is not an exact set in general, S = (U,R) is

called here the approximation space.

Definition 2.2
Let S = (U,R) be an approximation space. Suppose X € U,
where X is not a null set. Then the sets
A(X)
A(X)

{x :[x)g €X )} and

x:[x]gnX = ¢}

are called respectively lower and upper approximations of the set
X in the approximation space S, where ([x]x denotes the
equivalence class of the relation R containing x. The rough set
A(X) = (A(X), A(X)) is called the rough set of X in S. For =
fixed approximation space S = (U,R) and for a fixed non-null

subset X of U, the rough set of X i.e. A(X) is unique.

Definition 2.3

Let A = (A, A) and B = (B, B) be any two rough sets in the
approximation space S = (U,R). Then

(1) AUB

(AuB, A U B)

(i1) A nB

A
(&"B, A n B)
(iii) A< B iff An B = A.

We say that A is a rough subset of B or B is a rough
superset of A. Thué AcBiff AcBand A < B. This
property of rough inclusion has all the properties of

set inclusion.
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(iv) The natural inverse rough set of A denoted by -A is
defined by
-A=(U-&, U-4) |
This -A is also called rough complement of A in (U,R).
(v) A-B =An(-B) =(a- B, -8

3. Rough Metric Space

Let us define now a rough metric space.

Definition 3.1

Let X be a non-null subset of U and R be an equivalence

relation defined on U. Let A(X) be the rough set of X in the

approximation space (U,R). Then the function
d : X xX — R

is called a rough metric on X if the following are true:

vV x,y,2 € X,

(L) d(x,y) =0
d(x,y) = 0 iff [x}g = [yla
(i1) d(x,y) = d(y,x)

(111) d(x,y) + d(y,z) Z d(x,2)

We say that d is a rough metric or rough distance‘function on X,

and <A (X), d > is a rough metric space. Rough distance between x
and y is d(x,y).
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Thus, rough metric spaces are not metric spaces in general.
But a metric space is a rough metrix space if +the equivalence

relation R is such that x is related toy 1i.e. xRy iff x = vy,

when »x,yv€ X.

Example 3.1

Let X be a non-empty subset of U. Let A(X) be the rough set
of X in the approximation space S = (A,R) where R is an

equivalence relation defined on U, Define d by
d(x,y) 0, if [x)n = [vIn
1, otherwise,

VvV x,yEX.
Then d is a rough metric on X and <A(X),d> is & rough metric

space in the approximation space S.

Proposition 3.1
If <A(X),d> is a rough metric space in S = (U,R), then

<A(X),d,> is also so in S, where

di(x,¥) =1 3(38’:23:) V x,y€¥,

Proof: Clearly d,(x,y) 2 0. Also d,(x,y) = 0 1ff (x]p = [¥lm,
and d((x,y) = dq(y,x). The triangular inequality dy(x,2) =

dy(x,¥) + de(y,2) 6an be also proved by little calculation.

Provnosition 3.2

If €A(X),d > 1is a rough metric space, then (X/R,p) is a
metric space where p is defined by o([x],{y]) = d(x,y).
Proof: Clearly o([x).[y1) 20 V¥ [x],[y] € X/R.
If &({x),[y]) = 0, then d(x,y) = 0 which implies that [x] = [y],

and conversely, That p([x],[y]) = &{[y),[(x]) 4is obvious, For the
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triangular inequality we see that

AIx),0[21) = d(x,2)

1A

d(x,y) + d(y,z)
AUx], [y + &yl [2D)
vV [x],{y],.[2z] € X/R. Hence proved.

il

The following propositions are also true. The author states those

without proofs.

Proposition 3.3

If <A(X),d> is a rough metric space, then <A(X),e> 1is also a

rough metric space where P(x,y) = min {d(x,y),1}.

Proposition 3.4

If <A(X),d> is a rough metric space, then V x,y,z €& X,
[d(x,2) - d(y,z)] < d(x.y)

and VY x,y,x,,¥. € X,

fd(x,y) - d(x,,yy)]| = »Id(x,x,) + diy.ye) .

Definition 3.2
If <A(X),d> is a rough metric space, then the rough diameter
of the set X is & given by

& = sup d(x,y)
X,YE X



87

4. Rough Open Sets in a Rough Metric Space

We introduce here the concept of rough openness.

Definition 4.1

Given a rough méatric space <A(X),d> and a real number 1r>0

a rough open bBll B.(x) of rough radius r about a point x € X
is defined as

Br(x) = {y€ X 5 d(x,y) < r }.

Thus B,(x) constains all points of X whose rough distance from x
is less than r, Clearly B,(x) * ¢. If r ¢ s then B.(x) € Bg(x).
Also rough open balls are not rough sets. |
Example 4.1

Consider the rough metric space given in Example 3.1.
Clearly B,(x) = X y YV x€X, and

B.(x) = X, Yr2z1l, If r < 1, then B.(x) = [x])x.

Definition 4.2

Let <A(X),ad> be>a rough metric space and A € X. A point ag€ A
is said to be an rough interior point of A if 3 a real no. r > 0

such that the rough open ball B,(a) < A.
Definition 4.3

Let <A(X),d> be a rough metric space and A € X. Then A is

said to be a rough open set if every point of A is a rough
interior point of A.

Clearly rough open sets are not rough sets.
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Proposition 4.1
A rough open set in <A(X),d> is a union of open balls.

Proof: V a€A, 3 r, > 0 such that

B, (a) <« A.
Qa

= 5 B () S & e (1)
Again, V a€ A, ac¢ B,q(a).

=> A S U B (a) = memmmmmm e (2)

agA a .

From (1) and (2) result follows

Proposition 4.2

Let <A{X),d> be a rough metric space.
Then (i) ¢ is rough open set
(1i) X is rough open set.

Proof : Straightforward.

Proposition 4.3

If <A(X),d> be a rough metric space, then
(1) the union of an arbitrary collection of réugh open sets
of X is a rough open set of X
(1i) the intersection of a finite collection of rough open
sets of X is a rough open set set of X.
Proof(id): Let {A, : i€ I} be an arbitrary collection of rough
open sets of X.

Let B = LE: A, and a € B be an arbitrary point.
=> a€ A, for at least one i€ I
=> 3 r > 0 such that B.(a) c 4;

=> B,(a) « B.
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=> a is a rough interior point of B.
=> B is rough open.

ProofCii): Let A, Az,..., A, be a finite collection of rough

open sets of X. Let B =l§x

A; and a g B.
=> a€A Vi=1,2,...,n.
=> Vi, 3 ri7>0 s.t. B,i(a) < A,
Suppose, r = min r;
=> Bi(a) < A v i.
=> B.(a) <« B
=> a is a rough interior peoint of B.

=> B is rough open.

Corollary 4.1

We can see by an example that the intersection of an
arbitrary collection of rough open sets need not be rough open.
For this, consider ¥ = set of real numbers and R is the

equivaleneerelation defined on X such that Vx,y€ X, xRy if x = y.

Choose the rough metric d = |x-y|. Clearly, <A(X),d> is a rough

metric space. Now consider the séquence {Gn} of rough open sets
G, = (- rl-; , ;l-l), nEN (set of natural numbers).

Clearly, :(:\1 G, is not rough open.

Proposition 4.4

A rough open ball in <A(X),d> is a rough open set.

Proof : Straightforward.
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