ROUGH METRIC SPACES

Author:

R. Biswas

Department of Mathematics Indian Institute of Technology Kharagpur - 721302, West Bengal, INDIA

Abstract :

In this paper the author introduces the concept of rough metric spaces, and studies some propositions.

Keywords:

Rough sets, rough metrics, rough distance functions, rough distances, rough metric spaces, rough diameter, rough open balls, rough interior points, rough open sets.

1. Introduction

Pawlak [4,8] introduced the concept of rough sets. Since then it has become an attractive area of research in different fields. Algebraic approach to rough sets was studied by Iwinski [3]. In [1], Dubois and Prade studied rough fuzzy sets and fuzzy rough sets. They also suggested some research directions in the same paper [1].

In the present paper the author introduces the concept of rough metric spaces and studies several properties and propositions. The rough metric spaces are not metric spaces in general; but metric spaces can be regarded as rough metric spaces.

2. Preliminaries

We give below some preliminaries on rough sets.

Definition 2.1

Let U be a non-empty set and B be a complete algebra of the Boolean algebra P(U) of subsets of U. The pair (U,B) is called a rough universe.

Definition 2.2

Let $V = (U, \mathbb{B})$ be a given fixed rough universe. Let R be a relation defined as follows:

 $A = (A, \bar{A}) \in R$ iff $A, \bar{A} \in B$ and $A \subseteq \bar{A}$.

Then the elements of R are called rough sets, and the elements of B are called exact sets.

We see that (X,X) is a rough set $\forall X \in \mathbb{B}$. Thus in this sense of idnetification an axact set can be viewed as a rough set. But a rough set is not an exact set in general. S = (U,R) is called here the approximation space.

Definition 2.2

Let S = (U,R) be an approximation space. Suppose $X \subseteq U$, where X is not a null set. Then the sets

 $A(X) = \{x : [x]_R \subseteq X \} \text{ and }$

 $\bar{A}(X) = \{x : [x]_R \cap X \neq \emptyset\}$

are called respectively lower and upper approximations of the set X in the approximation space S, where $[x]_R$ denotes the equivalence class of the relation R containing x. The rough set $A(X) = (A(X), \bar{A}(X))$ is called the rough set of X in S. For a fixed approximation space S = (U,R) and for a fixed non-null subset X of U, the rough set of X i.e. A(X) is unique.

Definition 2.3

Let $A = (A, \overline{A})$ and $B = (B, \overline{B})$ be any two rough sets in the approximation space S = (U,R). Then

- (i) $A \cup B = (A \cup B, \overline{A} \cup \overline{B})$
- (ii) $A \cap B = (\underline{A} \cap \underline{B}, \overline{A} \cap \overline{B})$
- (iii) $A \subset B$ iff $A \cap B = A$.

We say that A is a rough subset of B or B is a rough superset of A. Thus $A \subset B$ iff $A \subset B$ and $\overline{A} \subset \overline{B}$. This property of rough inclusion has all the properties of set inclusion.

(iv) The natural inverse rough set of A denoted by -A is defined by

$$-A = (U - \overline{A}, U - A)$$

This -A is also called rough complement of A in (U,R).

(v)
$$A - B = A \cap (-B) = (\underline{A} - \overline{B}, \overline{A} - \underline{B})$$

3. Rough Metric Space

Let us define now a rough metric space.

Definition 3.1

Let X be a non-null subset of U and R be an equivalence relation defined on U. Let A(X) be the rough set of X in the approximation space (U,R). Then the function

$$d: X \times X \longrightarrow \mathbb{R}$$

is called a rough metric on X if the following are true: $\forall x,y,z \in X$,

- (i) $d(x,y) \ge 0$ $d(x,y) = 0 \text{ iff } [x]_R = [y]_R$
- (ii) d(x,y) = d(y,x)
- (iii) $d(x,y) + d(y,z) \ge d(x,z)$

We say that d is a rough metric or rough distance function on X, and $\langle A (X), d \rangle$ is a rough metric space. Rough distance between x and y is d(x,y).

Thus, rough metric spaces are not metric spaces in general. But a metric space is a rough metrix space if the equivalence relation R is such that x is related to y i.e. xRy iff x = y, when $x,y \in X$.

Example 3.1

Let X be a non-empty subset of U. Let A(X) be the rough set of X in the approximation space S = (A,R) where R is an equivalence relation defined on U. Define d by

$$d(x,y) = 0$$
, if $[x]_R = [y]_R$
= 1, otherwise,
 $\forall x,y \in X$.

Then d is a rough metric on X and $\langle A(X), d \rangle$ is a rough metric space in the approximation space S.

Proposition 3.1

If $\langle A(X), d \rangle$ is a rough metric space in S = (U,R), then $\langle A(X), d_1 \rangle$ is also so in S, where

$$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)} \quad \forall x,y \in Y.$$

Proof: Clearly $d_i(x,y) \ge 0$. Also $d_i(x,y) = 0$ iff $[x]_R = [y]_R$, and $d_i(x,y) = d_i(y,x)$. The triangular inequality $d_i(x,z) \le d_i(x,y) + d_i(y,z)$ can be also proved by little calculation.

Proposition 3.2

If $\langle A(X), d \rangle$ is a rough metric space, then $(X/R, \rho)$ is a metric space where ρ is defined by $\rho([x],[y]) = d(x,y)$.

Proof: Clearly $\rho([x],[y]) \ge 0 \quad \forall [x],[y] \in X/R$.

If $\rho([x],[y]) = 0$, then d(x,y) = 0 which implies that [x] = [y], and conversely. That $\rho([x],[y]) = \rho([y],[x])$ is obvious. For the

triangular inequality we see that

$$\rho([x],[z]) = d(x,z)$$

$$\leq d(x,y) + d(y,z)$$

$$= \rho([x],[y]) + \rho([y],[z])$$

 $\forall [x],[y],[z] \in X/R$.

Hence proved.

The following propositions are also true. The author states those without proofs.

Proposition 3.3

If $\langle A(X), d \rangle$ is a rough metric space, then $\langle A(X), \rho \rangle$ is also a rough metric space where $\rho(x,y) = \min \{d(x,y), 1\}$.

Proposition 3.4

If $\langle A(X), d \rangle$ is a rough metric space, then $\forall x,y,z \in X$, $|d(x,z) - d(y,z)| \le d(x,y)$

and $\forall x, y, x_1, y_1 \in X$,

$$|d(x,y) - d(x_1,y_1)| \le |d(x,x_1) + d(y,y_1)|.$$

Definition 3.2

If $\langle A(X),d \rangle$ is a rough metric space, then the rough diameter of the set X is δ given by

$$\delta = \sup_{x,y \in X} d(x,y)$$

4. Rough Open Sets in a Rough Metric Space

We introduce here the concept of rough openness.

Definition 4.1

Given a rough me tric space $\langle A(X),d\rangle$ and a real number r>0, a rough open ball $B_r(x)$ of rough radius r about a point $x\in X$ is defined as

$$B_r(x) = \{y \in X : d(x,y) < r \}.$$

Thus $B_r(x)$ constains all points of X whose rough distance from x is less than r. Clearly $B_r(x) \neq \phi$. If r < s then $B_r(x) \subseteq B_s(x)$. Also rough open balls are not rough sets.

Example 4.1

Consider the rough metric space given in Example 3.1. Clearly $B_4(x) = X$, $\forall x \in X$, and

$$B_n(x) = X, \quad \forall r \ge 1, \text{ If } r < 1, \text{ then } B_r(x) = [x]_R.$$

Definition 4.2

Let $\langle A(X), d \rangle$ be a rough metric space and $A \subseteq X$. A point $a \in A$ is said to be an rough interior point of A if \exists a real no. r > 0 such that the rough open ball $B_r(a) \subset A$.

Definition 4.3

Let $\langle A(X), d \rangle$ be a rough metric space and $A \subseteq X$. Then A is said to be a rough open set if every point of A is a rough interior point of A.

Clearly rough open sets are not rough sets.

Proposition 4.1

A rough open set in $\langle A(X), d \rangle$ is a union of open balls.

Proof: $\forall a \in A, \exists r_a > 0$ such that

$$B_{r_0}(a) \subset A$$
.

$$\Rightarrow \bigcup_{\alpha \in A} B_{r_{\alpha}}(x) \leq A \qquad (1)$$

Again, $\forall a \in A$, $a \in B_{r_a}(a)$.

$$= A \subseteq U B_{r}(a) \qquad (2)$$

From (1) and (2) result follows

Proposition 4.2

Let $\langle A(X), d \rangle$ be a rough metric space.

Then (i) ϕ is rough open set

(ii) X is rough open set.

Proof: Straightforward.

Proposition 4.3

If $\langle A(X), d \rangle$ be a rough metric space, then

- (i) the union of an arbitrary collection of rough open sets of X is a rough open set of X
- (ii) the intersection of a finite collection of rough open sets of X is a rough open set set of X.

Proof(i): Let $\{A_i : i \in I\}$ be an arbitrary collection of rough open sets of X.

Let $B = \bigcup_{i \in I} A_i$, and $a \in B$ be an arbitrary point.

=> a∈A, for at least one i∈ I

 \Rightarrow 3 r > 0 such that $B_r(a) \subset A_i$

 $\Rightarrow B_r(a) \subset B.$

- => a is a rough interior point of B.
- => B is rough open.

Proof(11): Let A_1, A_2, \ldots, A_n be a finite collection of rough open sets of X. Let $B = \bigcap_{i=1}^n A_i$ and $a \in B$.

- \Rightarrow a $\in A_i \quad \forall i = 1, 2, ..., n.$
- \Rightarrow $\forall i$, $\exists r_i > 0 \text{ s.t. } B_{r_i}(a) \subset A_i$

Suppose, $r = min r_i$

- \Rightarrow $B_r(a) \subset A_i \quad \forall i.$
- \Rightarrow $B_r(a) \subset B$
- => a is a rough interior point of B.
- => B is rough open.

Corollary 4.1

We can see by an example that the intersection of an arbitrary collection of rough open sets need not be rough open.

For this, consider X = set of real numbers and R is the equivalence relation defined on X such that $\forall x,y \in X$, xRy if x = y. Choose the rough metric d = |x-y|. Clearly, $\langle A(X), d \rangle$ is a rough metric space. Now consider the sequence $\{G_n\}$ of rough open sets $G_n = (-\frac{1}{n}, \frac{1}{n})$, $n \in \mathbb{N}$ (set of natural numbers).

Clearly, $\bigcap_{n=1}^{\infty} G_n$ is not rough open.

Proposition 4.4

A rough open ball in $\langle A(X), d \rangle$ is a rough open set. Proof: Straightforward.

REFERENCES

- [1] D. Dubois and H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. Jour. Gen. Systems. 17(1989)191-209.
- [2] S. Nanda, and S. Majumdar, Fuzzy rough sets, Fuzzy Sets and Systems. 45 (1992) 157-160.
- [3] T. B. Iwinski, Algebraic approach to rough sets, Bull. Pol. Aca. Sci. -Mathematics 35, 9-10 (1987), 673-683.
- [4] Z. Pawlak, Rough sets, Basic notions, ICS PAS Reports, 436 (1981).
- [5] Z. Pawlak, Rough sets, Power set hierarchy, ICS PAS Reports. 470 (1982).
- [6] Z. Pawlak, Rough sets, Algebraic and topological approach.

 ICS PAS Reports, 482 (1982).
- [7] Z. Pawlak, Some remarks on Rough Sets, Pull. Pol. Ac.: Tech 33 (1985).
- [8] Z. Pawlak, Rough Sets, Inter.J. Inf: Comp.Sc., 11(5) (1982) 341-356.
- [9] Z. Pawlak, Rough sets and fuzzy sets, Fuzzy Sets and Systems. 17(1985) 99 102.