COMMON FIXED DEGREE FOR A SEQUENCE OF g-NONEXPANSIVE TYPE FUZZY MAPPINGS

SHI CHUAN and ZHU SHUNRONG

Department of Applied Mathematics

Nanjing University of Science & Technology

Nanjing, 210014, People's Republic of China

ABSTRACT: In this paper the common fixed degree for a sequence of g-non-expansive type fuzzy mappings are studied. The results presented improve and generalize the corresponding recent important results.

KEY WORDS AND PHRASES: Fuzzy analysis, fuzzy mapping, nonexpansive type fuzzy mapping, fixed degree, common fixed degree.

1991 AMS SUBJECT CLASSIFICATION: 47H10,54H25.

1 PRELIMINARIES

Throughout this paper, let $(E, \| \cdot \|)$ be a Banach space, $D \subseteq E, C(E)$ be collection of all non-empty compact subsets of $E, R = (-\infty, +\infty), Z^+$ be the set of all positive integers, a mapping $A: D \to [0,1]$ is called a fuzzy subset over D, we denote by $\mathscr{F}(D)$ the family of all fuzzy subsets over D, a mapping $F: D \to \mathscr{F}(D)$ is called fuzzy mapping over D, let $A \in \mathscr{F}(D)$ $\alpha \in [0, 1]$, set $A_{\alpha} = \{x \mid A(x) \geqslant \alpha, x \in D\}$ is called the α -cut set of A.

DEFINITION 1. 1. Let $\{F_K: D \to \mathscr{F}(D)\}_{K=1}^{+\infty}$ be a sequence of fuzzy mappings, if there exsits a sequence of functions $\{O_K(x): D \to (0,1]\}_{K=1}^{+\infty}$ such that for all $x \in D$, $(F_K x)_{O_K(x)} \in C(E)$ $(K = 1, 2, \cdots)$, then we say that $\{F_K\}_{K=1}^{+\infty}$ for $\{O_K(x)\}_{K=1}^{+\infty}$ satisfies the condition (A).

Throughout this paper we denote $(F_K x)_{O_{\mathbf{x}}(x)}$ by $\widetilde{F}_K x$ set, i. e., $\widetilde{F}_K x = (F_K x)_{O_{\mathbf{x}}(x)}$ for all $x \in D$, all $K \in Z^+$.

DEFINITION 1. 2. Let $g: D \to D$ be a single-valued mapping, $\{F_K: D \to \mathcal{F}(D)\}_{K=1}^{+\infty}$ be a sequence of fuzzy mappings, if there exists a sequence of functions $\{O_K(x): D \to (0,1]\}_{K=1}^{+\infty}$ such that $\{F_K\}_{K=1}^{+\infty}$ satisfies the condition

(B): for any $K, L \in \mathbb{Z}^+, x, y \in D, Ux \in \widetilde{F}_K x$ there exsits $Vy \in \widetilde{F}_L y$ such that $\|Ux - Vy\| \leqslant r \|g(x) - g(y)\|, r \in (0,1)$ (1.1)

Then we say that $\{F_K\}_{K=1}^{+\infty}$ for $\{O_K(x)\}_{K=1}^{+\infty}$ be the sequence of g-contractive type fuzzy mapping. If the sequence of set-valued mappings $\{T_K: D \to 2^D\}_{K=1}^{+\infty}$ satisfies the condition (B), then we say tha $\{T_K\}_{K=1}^{+\infty}$ be a sequence of g-contractive type set-valued mappings.

DEFINITION 1. 3. When r = 1 in (1.1) of the Definition 1.2, we say that $\{F_K\}_{K=1}^{+\infty}$ for $\{O_K(x)\}_{K=1}^{+\infty}$ be a sequence of g-nonexpansive type fuzzy mappings.

DEFINITION 1. 4. Let $\{F_K, D \to \mathscr{F}(D)\}_{K=1}^{+\infty}$ be a sequence of fuzzy mappings, $p \in D$, $(\bigcap_{K=1}^{+\infty} F_K p)(p)$ is called the common fixed degree of p for $\{F_K\}_{K=1}^{+\infty}$. In particular, if $(\bigcap_{K=1}^{+\infty} F_K p)(p) = \max_{u \in D} (\bigcap_{K=1}^{+\infty} F_K p)(u)$, then we say that $\{F_K\}_{K=1}^{+\infty}$ has the maximum common fixed degree at p, or that p is a common fixed point of $\{F_K\}_{K=1}^{+\infty}$.

2 MAIN RESULTS

THEOREM 2. 1. Let $(E, \| \cdot \|)$ be a Banach Space, $D \subseteq E$ be a nonempty weakly closed subset of $E, g: D \to D$ be a nonexpansive mapping, $\{F_K: D \to \mathscr{F}(D)\}_{K=1}^{+\infty}$ be a sequence of fuzzy mappings. If there exsits a sequence of functions $\{O_K(x): D \to (0,1]\}_{K=1}^{+\infty}$ such that $\{F_K\}_{K=1}^{+\infty}$ satisfies the condition $(A_1): \{F_K\}_{K=1}^{+\infty}$ for $\{O_K(x)\}_{K=1}^{+\infty}$ satisfies the condition (A) and be a sequence of g-contractive type fuzzy mappings, then there exsits $p \in D$ such that the common fixed degree of p for $\{F_K\}_{K=1}^{+\infty}\} = \min_{i \ge 1} \{O_K(x)\}$. In particular, if $\{F_K\}_{K=1}^{+\infty}$ for $\{O_K(x) = \max_{u \in D} F_K x(u)\}_{K=1}^{+\infty}$ satisfies the condition (A_1) , then there exsists $p \in D$, p be a common fixed point of $\{F_K\}_{K=1}^{+\infty}$.

PROOF. By assumption, $\{F_K\}_{K=1}^{+\infty}$ for $\{O_K(x)\}_{K=1}^{+\infty}$ satisfies the condition (A) and be a sequence of g-contractive type fuzzy mappings, $g:D \to D$ be a nonexpansive mapping, for any $x_0 \in D$, $\widetilde{F}_1 x_0 \in C(E)$, for any $x_1 \in \widetilde{F}_1 x_0$, there exsits $x_2 \in \widetilde{F}_2 x_1$ such that:

$$\parallel x_2 - x_1 \parallel \leqslant r \parallel g(x_1) - g(x_0) \parallel \leqslant r \parallel x_1 - x_0 \parallel$$
.

for $x_2 \in \widetilde{F}_2 x_1$ there exsits $x_3 \in \widetilde{F}_3 x_2$ such that

$$||x_3-x_2|| \leqslant r ||g(x_2)-g(x_1)|| \leqslant r ||x_2-x_1||.$$

Taking this procedure repeatedly, we can obtain a sequence $\{x_N\}\subseteq D$ such that $x_{N+1}\in \widetilde{F}_{N+1}x_N$ moreover

$$\| x_{N+1} - x_N \| \leqslant r \| g(x_N) - g(x_{N-1}) \| \leqslant r \| x_N - x_{N-1} \|.$$

$$\| x_{N+1} - x_N \| \leqslant r \| x_N - x_{N-1} \| \leqslant \cdots \leqslant r^N \| x_1 - x_0 \|, r \in (0,1).$$

$$\| x_{N+M} - x_N \| \leqslant \sum_{K=1}^M \| x_{N+K} - x_{N+K-1} \| \leqslant \sum_{K=1}^M r^{N+K-1} \| x_1 - x_0 \|$$

$$\leqslant \frac{r^N}{1 - r} \| x_1 - x_0 \| \qquad \forall M \in \mathbb{Z}^+$$

it is easy to see that $\{x_N\}$ is a cauchy sequence in D. By $(E, \| \cdot \|)$ is a Banach space, there exists $p \in E$ such that $p = \lim_{N \to \infty} x_N$, by D is a nonempty weakly closed subset of E, $\lim_{N \to \infty} x_N = p$ implies $w = \lim_{N \to \infty} x_N = p$, therefore $p \in D$.

Next, we prove that $p \in \widetilde{F}_M p$ $(M = 1, 2, \cdots)$, for any $M \in \mathbb{Z}^+$, by $x_N \in \widetilde{F}_N x_{N-1}$, there exists $v_N \in \widetilde{F}_M p$ such that:

$$\parallel x_N-v_N\parallel \leqslant r\parallel g(x_{N-1})-g(p)\parallel \leqslant r\parallel x_{N-1}-p\parallel$$
 therefore $\parallel x_N-v_N\parallel \to 0\ (N\to +\infty)$, thus

$$\|v_N - p\| \leqslant \|v_N - x_N\| + \|x_N - p\| \to 0 \quad (N \to +\infty)$$
i. e. $\lim_{N \to \infty} v_N = p$, moreover $v_N \in \widetilde{F}_M p \in C(E)$, we have $p \in \widetilde{F}_M p = (F_M p)_{O_M(p)}$

By $p \in (F_M p)_{O_M(p)}$ we have $F_M p(p) \geqslant O_M(p) \geqslant \min_{M \geqslant 1} \{O_M(p)\} (M = 1, 2, \dots)$, therefore $(\bigcap_{K=1}^{+\infty} F_K p)(p) = \min_{K \geqslant 1} F_K p(p) \geqslant \min_{K \geqslant 1} \{O_K(p)\}$, i. e. the common fixed degree of p for $\{F_K\}_{K=1}^{+\infty} \geqslant \min_{K \geqslant 1} \{O_K(p)\}$. In particular, if $\{F_K\}_{K=1}^{+\infty}$ for $\{O_K(x) = \max_{u \in D} F_K x(u)\}_{K=1}^{+\infty}$ satisfies the condition (Δ_1) , we have $(\bigcap_{K=1}^{+\infty} F_K p)(p) \geqslant \min_{K \geqslant 1} \{O_K(p)\} = \min_{K \geqslant 1} \{\max_{u \in D} F_K p(u)\} \geqslant \min_{K \geqslant 1} F_K p(u) = (\bigcap_{K=1}^{+\infty} F_K p)(u)$ (for any $u \in D$), thus $(\bigcap_{K=1}^{+\infty} F_K p)(p) \geqslant \max_{u \in D} (\bigcap_{K=1}^{+\infty} F_K p)(u) \geqslant (\bigcap_{K=1}^{+\infty} F_K p)(p)$, therefore $(\bigcap_{K=1}^{+\infty} F_K p)(p) = \max_{u \in D} (\bigcap_{K=1}^{+\infty} F_K p)(u)$, i. e. p be a common fixed point of $\{F_K\}_{K=1}^{+\infty}$

COROLLARY 2.2. Let $(E, \| \cdot \|)$, $D, g: D \rightarrow D$ satisfy the condi-

tions of Theorem 2. 1, let $\{T_K: D \to 2^p\}_{K=1}^{+\infty}$ be a sequence of set-valued mappings. If $\{T_K: D \to 2^p\}_{K=1}^{+\infty}$ be a sequence of g-contractive type set-valued mappings, moreover for any $x \in D, T_K x \in C(E)$ $(K = 1, 2, \cdots)$, then there exsits $p \in D, p \in \bigcap_{K=1}^{+\infty} T_K p$, i. e. p be a common fixed point of $\{T_K\}_{K=1}^{+\infty}$.

THEOREM 2. 3. Let $(E, \| \cdot \|)$ be a Banach space whick satisfies opial's condition ([3],[4]), D be a nonempty weakly closed star-shaped subset of E, M be a weakly compact subset of $E, g: D \to D$ be a nonexpansive mapping, $\{F_K: D \to \mathcal{F}(D)\}_{K=1}^{+\infty}$ be a sequence of fuzzy mappings. If there exists a sequence of functions $\{O_K(x): D \to (0,1]\}_{K=1}^{+\infty}$ such that $\{F_K\}_{K=1}^{+\infty}$ satisfies the condition $(\Delta_2): \{F_K\}_{K=1}^{+\infty}$ for $\{O_K(x)\}_{K=1}^{+\infty}$ satisfies the condition (A) and be a sequence of g-nonexpansive type fuzzy mappings, for any $x \in D, \widetilde{F}_1 x \subseteq M$.

Then there exists $p \in D$, the common fixed degree of p for $\{F_K\}_{K=1}^{+\infty} \geqslant \min_{K \geqslant 1} \{O_K(p)\}$. In particular, if $\{F_K\}_{K=1}^{+\infty}$ for $\{O_K(x) = \max_{k \in D} F_K x(u)\}_{K=1}^{+\infty}$ satisfies the condition (Δ_2) , then $\{F_K\}_{K=1}^{+\infty}$ has a common fixed point P in D.

PROOF. Let $t_N \in (0,1)$ $(N=1,2,\cdots)$, $\lim_{N\to\infty} t_N = 1$, x_0 be the star-centre of D, for each $N \geqslant 1$, define the set-valued mapping $T_K^N: D \to 2^D(K=1,2,\cdots)$ by setting

 $T_K^N x = t_N \widetilde{F}_K x + (1 - t_N) x_0 = \{t_N u + (1 - t_N) x_0 \mid u \in \widetilde{F}_K x\}, x \in D$ for any $x \in D$, by $\widetilde{F}_K x \in C(E)$, therefore $T_K^N x \in C(E)$, for any $K, L \in Z^+$, any $x, y \in D$, any $U_X^N \in T_K^N x$, there exists $Ux \in \widetilde{F}_K x$ such that $U^N x = t_N Ux + (1 - t_N) x_0$, by $\{F_K\}_{K=1}^{+\infty}$ be a sequence of g-nonexpansive type fuzzy mappings, therefore there exists $Vy \in \widetilde{F}_L y$ such that $||Ux - Vy|| \leq ||g(x) - g(y)||$, thus $V^N y = t_N V y + (1 - t_N) x_0 \in T_L^N y$ satisfies

 $\|U^Nx - V^Ny\| = t_N \|Ux - Vy\| \leqslant t_N \|g(x) - g(y)\|, t_N \in (0,1)$ which implies that $\{T_K^N\}_{K=1}^{+\infty}$ be a sequence of g-contractive type set-valued mappings, by corollary 2. 2 there exists $p_N \in \bigcap_{K=1}^{+\infty} T_K^N p_N$, i. e. $p_N \in T_K^N p_N \subseteq D$ $(K = 1, 2, \cdots)$. Let $p_N = t_N u_N + (1 - t_N) x_0$, $u_N \in \widetilde{F}_{KP_N} \in C(E)$ $(K = 1, 2, \cdots)$, $p_N - u_N = (1 - t_N) (x_0 - U_N)$, since $\{u_N\} \subseteq \widetilde{F}_1 p_N \subseteq M, \{u_N\}$ is bounded, $\{x_0 - U_N\}$ is bounded, therefore $p_N - u_N \to 0$ $(N \to +\infty)$, let $p_N = p_N - u_N, p_N - p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq M$, by $p_N = u_N \in \widetilde{F}_1 p_N \subseteq$

Next we prove that for any $L \in Z^+$, $p \in \widetilde{F}_L p$. In fact, for any $M \geqslant 1$, by $p_M - q_M = u_M \in \widetilde{F}_K p_M$ and $\{F_K\}_{K=1}^{+\infty}$ be a sequence of g-nonexpansive type fuzzy mappings, there exists $v_M \in \widetilde{F}_L p$ such that $\|u_M - v_M\| \leqslant \|g(p_M) - g(p)\| \leqslant \|p_M - p\|$, therefore $\|p_M - (q_M + v_M)\| \leqslant \|p_M - p\|$, since $v_M \in \widetilde{F}_L p \in C(E)$, therefore there exists $\{v_S\} \subseteq \{v_M\}$ such that $\limsup_{S \to \infty} v \in \widetilde{F}_L p$, thus $q_S + v_S \to v(S \to +\infty)$, we have $\liminf_S \|p_S - v\| \leqslant \liminf_S \|p_S - v\|$ for any $j \in Z^+$, therefore $p \in \bigcap_{L=1}^{+\infty} \widetilde{F}_L p$. By $p \in \widetilde{F}_L p$ ($L = 1, 2, \cdots$), the same as proof of 2.1, we obtain the conclusion of Theorem 2.3.

COROLLARY 2. 4. Let $(E, \| \cdot \|)$, $D, g, D \rightarrow D$, M satisfy the conditions of Theorem 2. 3. If $\{T_K, D \rightarrow 2^D\}_{K=1}^{+\infty}$ satisfies the condition (Δ_3) : for any $x \in D$, $T_K x \in C(E)$, moreover $\{T_K\}_{K=1}^{+\infty}$ be a sequence of g-nonexpansive type set-valued mappings, then $\{T_K\}_{K=1}^{+\infty}$ has a common fixed point in D.

REMARK 2. 5. The main results of [4,5] are the special cases of Corollary 2. 4, the main results of [2,3] are the special cases of Theorem 2. 3.

REFERECES

- [1] Chang, S. S., Fixed degree for fuzzy mappings and a generalization of KY FAN'S theorem, Fuzzy Sets and Systems, 24(1987)103—112.
- [2] Lee, B. S. and Cho, S. J., A fixed point theorem for contractive-type fuzzy mappings, Fuzzy Sets and Systems, 61(1994) 309-312.
- [3] Lee, B. S. and Kim, D. S. et al, common fixed points for nonexpansive and nonexpansive type fuzzy mapping, Internat. J. Math. & Math. Sci. Vol. 18 No. 4 (1995) 813-815
- [4] Latif, A. et al, Fixed point of nonexpansive type and K-multivalued maps, Internat. J. Math. & Math. Sci. Vol. 17 No. 3 (1994) 429-436.
- [5] Husain, T., Latif, A., Fixed points of multivalued nonexpansive maps, Internt. J. Math. & Math. Sci. Vol. 14. No. 3 (1991) 421-430.