LINGUISTICALLY VALUED OPERATOR LOGIC

CHEN TUYUN SUN DESHAN

(Department of Mathematics, Liaoning Normal University, Dalian, China, 116029)

ABSTRACT

Zadeh presented linguistically valued logic in 1975. Liu Xuhua presented the concept of operator logic in 1984. In this paper, a system of Linguistically Valued Operator Logic (LVOL) is suggested. In this system, truth values may be expressed clearly by operator. λ —resolution and completeness theorem are introduced at last.

Keywords; linguistically valued operator, \(\lambda - \text{identically true, } \) - identically false, \(\lambda - \text{resolution.} \)

1 Linguistically valued operator lattice

Definition 1.1^[1] Let (L, \leq) be a completely complemented lattice of distribution and let L be a operator set. Operator • is a binary operation on L. If $\forall a,b,c \in L$, satisfies the following conditions:

 $(1)a \cdot (b * c) = (a \cdot b) * (a \cdot c); (2)a \cdot (b \oplus c) = (a \cdot b) \oplus (a \cdot c); (3)(a \cdot b)' = a' \cdot b',$ then (L, \leq) is called a operator lattice, where $*, \oplus$ and are operation of infimum, supremum and complement respectively.

Theorem 1. 1 Let \widetilde{L}_1 be a set of fuzzy numbers^[2] on [0,1]. $\forall \ \varrho, \ \varrho, \ \xi \in \widetilde{L}_1$, if we define ', *, \oplus and • as following,

$$a' = \bigcup_{\lambda \in \{0,1\}} \lambda [1 - a_{\lambda}^{+}, 1 - a_{\lambda}^{-}],$$

$$a * b = a \land b = \bigcup_{\lambda \in \{0,1\}} \lambda [a_{\lambda}^{-} \land b_{\lambda}^{-}, a_{\lambda}^{+} \land b_{\lambda}^{+}],$$

$$a \oplus b = a \lor b = \bigcup_{\lambda \in \{0,1\}} \lambda [a_{\lambda}^{-} \lor b_{\lambda}^{-}, a_{\lambda}^{+} \lor b_{\lambda}^{+}],$$

$$a \cdot b = \bigcup_{\lambda \in \{0,1\}} \lambda [\frac{a_{\lambda}^{-} + b_{\lambda}^{-}}{2}, \frac{a_{\lambda}^{+} + b_{\lambda}^{+}}{2}],$$

then \tilde{L}_1 is a operator lattice (we call linguistically valued operator lattice too).

2 Basic concept

Definition 2. 1 Let P be a atomic symbol, $\lambda \in \mathcal{L}_1$. Then call λP fuzzy atom.

Definition 2. 2 Formulas of LVOL are defined recursively:

- (1) Fuzzy atom is a formula;
- (2) If G is formula, then λG , $\sim G$ are formula, where $\lambda \in \mathcal{Z}_1$;
- (3) If G,H are formula, then $G \wedge H,G \wedge H,G \rightarrow H$ and $G \rightarrow H$ are formula;
- (4) If G is formula, x is a free variable in G, then $(\forall x) G(x)$, $(\exists x) G(x)$, $(\grave{\lambda} \forall x) G(x)$ and $(\grave{\lambda} \exists x) G(x)$ are formula;
 - (5) All of formulas are generated by using (1) \sim (4).
- $\lambda_1(\lambda_2(\cdots (\lambda_p P)\cdots \lambda_p P))$ is called literal. It is expressed simply by $\lambda_1\lambda_2\cdots \lambda_p P$, specially, fuzzy atom is literal.

Definition 2. 3 Solution I of G is made of non-empty universe and the following rules:

- (1) Assign a member of D to every variable symbol;
- (2) Assign a mapping from D^n to D to every n-tuple function symbol;
- (3) Assign a mapping from D^* to $\{F,T\}$ to every predicate symbol.

Definition 2. 4 Truth values $T_I(G)$ is defined by the following rules:

- (1) If λP is fuzzy atom, then $T_I(\lambda P) = \lambda$, iff P is defined T by $I_I T_I(\lambda P) = \lambda'$ iff P is defined F by I.
 - (2) If G and H are formulas, then

$$T_{I}(\lambda G) = \lambda \cdot T_{I}(G);$$

$$T_{I}(\sim G) = (T_{I}(G))';$$

$$T_{I}(G \vee H) = T_{I}(G) \oplus T_{I}(H);$$

$$T_{I}(G \wedge H) = T_{I}(G) * T_{I}(H);$$

$$T_{I}(G \rightarrow H) = T_{I}(\sim G \vee H);$$

$$T_{I}(G \rightarrow H) = T_{I}((G \rightarrow H) \wedge (H \rightarrow G));$$

$$T_{I}((\forall x)G(x)) = \prod_{x \in D} (T_{I}(G(x)));$$

$$T_{I}((\exists x)G(x)) = \sum_{x \in D} (T_{I}(G(x)));$$

$$T_{I}((\lambda \forall x)G(x)) = T_{I}(\lambda ((\forall x)G(x)));$$

$$T_{I}((\lambda \exists x)G(x)) = T_{I}(\lambda ((\exists x)G(x)));$$

where $x_1 \oplus x_2 \oplus \cdots$ is denoted simply by $\sum_i x_i, x_1 * x_2 * \cdots$ is denoted simply by $\prod_i x_i$.

3 Normal form of formulas in LVOL

Theorem 3. 1 Arbitrary formula in LVOL is equivalent to a former constraint normal form.

Definition 3. 1 Let G be a formula, $\lambda \in \mathcal{I}_1$. If $\forall I, T_I(G) \leq \lambda$, then G is λ —identically false; if $\forall I, T_I(G) \geq \lambda$, then G is λ —identically true.

Theorem 3. 2 Formula G is λ —identically false iff Skolem's normal form of G is λ —identically false.

4 λ —resolution

Because \tilde{L}_1 is a partial ordered set, importing $\tilde{\lambda}$ —resolution is difficult. We may take a completely ordered subset of \tilde{L}_1 as our discussing field. The truth values of "unknowing to be true or false" is represented by U_n , where $\mu_{U_n}(x) \equiv 1$. We take a completely ordered subset including U_n from \tilde{L}_1 , it is denoted by \tilde{N} . From now on, truth values of formulas are taken from \tilde{N} .

In order to discuss conventiently, we only think about clauses being made of fuzzy atom. Its conclusions are easy to extend to normal clauses.

Definition 4. 1 Let $\lambda_1 L$ and $\lambda_2 L$ be two literals, $\lambda \in \tilde{N}$. If $\lambda \geqslant U_n, \lambda_1 > \lambda$ and $\lambda_2 < \lambda'$; or $\lambda_1 < \lambda'$ and $\lambda_2 > \lambda$ (if $\lambda < U_n$, then just contrary), then $\lambda_1 L$ and $\lambda_2 L$ are λ —complementative literal.

Definition 4. 2 Let $\lambda_1 L$ and $\lambda_2 L$ be two literals, $\lambda \in \mathbb{N}$. If $\lambda \geqslant U_n, \lambda_1 > \lambda$ and $\lambda_2 > \lambda$; or $\lambda_1 < \lambda'$ and $\lambda_2 < \lambda'$ (if $\lambda < U_n$, then iust contrary), then $\lambda_1 L$ and $\lambda_2 L$ are λ —samiliar literal.

Definition 4. 3 Let C_1 and C_2 be clauses without same variables, let $\lambda_1 L_1$ and $\lambda_2 L_2$ be respectively literal of C_1 and C_2 . If L_1 and L_2 have MGU σ , $\lambda_1 L_1''$ and $\lambda_2 L_2''$ are λ — complementative literal, then $(C_1''-S_1) \vee (C_2''-S_2)$ is called binary λ — resolution formula about C_1 and C_2 , denoted by $R_{\lambda}(C_1, C_2)$, where

 $S_1 = \{ \underline{\lambda} \cdot L^{\bullet} | (\underline{\lambda} \cdot L^{\bullet} \in C_1^{\bullet}) \land (\underline{\lambda} \cdot L^{\bullet} \text{ and } \underline{\lambda}_1 L_1^{\bullet} \text{ are } \underline{\lambda} - \text{samiliar literal}) \},$

 $S_2 = \{ \underline{\lambda} L^{\bullet} | (\underline{\lambda} L^{\bullet} \in C_2^{\bullet}) \land (\underline{\lambda} L^{\bullet} \text{ and } \underline{\lambda}_2 L_2^{\bullet} \text{ are } \underline{\lambda} - \text{samiliar literal} \}.$

Definition 4. 4 Let S be clause set. Treat disjunct λ^*L in C by the following rules, where $C \in S$,

- (1) if $\lambda \geqslant U_n, \lambda' \leqslant \lambda^* \leqslant \lambda$, then cross off $\lambda^* L$ from C;
- (2) if $\lambda < Un$, $\lambda \leq \lambda^* \leq \lambda'$, then cross off λ^*L from C.

The remained clause is called λ — primary reductive clause, denoted by C_{PR}^{λ} . The remained clause set is called λ —primary reductive clause set, denoted by S_{PR}^{λ} .

Theorem 4. 1 Let S be a clause set, $\lambda \ge Un$, then S is λ —identically false iff S_{PR}^{λ} is λ' —identically false.

Definition 4. 5 Let S_{PR}^{λ} be λ —primary reductive clause set of S. Treat the disjunct λ^*L in C_{PR}^{λ} by the following rules: where $C_{PR}^{\lambda} \in S_{PR}^{\lambda}$,

- (1) when $\lambda \geqslant U_n, \lambda^* > \lambda$, then $\lambda^* L$ is substituted by L,
- (2) when $\lambda \gg U_n$, $\lambda^* < \lambda'$, then $\lambda^* L$ is substituted by $\sim L$,
- (3) when $\lambda < U_n, \lambda^* > \lambda'$, then $\lambda^* L$ is substituted by L,
- (4) when $\lambda < U_n, \lambda^* < \lambda$, then $\lambda^* L$ is substituted by $\sim L$.

By this way, the attained clause is called λ —reductive clause, denoted by C_R^{λ} ; the attained clause set is called λ —reductive clause set, denoted by S_R^{λ} .

Theorem 4. 2 S_{PR}^{λ} is λ —identically false iff S_{R}^{λ} is λ —identically false.

Theorem 4. 3 Let C_1 and C_2 be two clauses, let C_{1R}^{λ} and C_{2R}^{λ} be respectively λ —reductive clause of C_1 and C_2 . If $C = R_{\lambda}(C_1, C_2)$, then there exists $C' = R(C_{1R}^{\lambda}, C_{2R}^{\lambda})$ such that $C' = C_{R}^{\lambda}$ is satisfied; In the contrary, if $C' = R(C_{1R}^{\lambda}, C_{2R}^{\lambda})$, then there exists $C = R_{\lambda}(C_1, C_2)$ such that $C_{R}^{\lambda} = C'$ is satisfied.

Theorem 4. 4 Let $\lambda \geqslant Un$. If clause set S is λ —identically false, then there exists λ —resolution such that λ —empty clause can be deduced by the resolution (each literal λ^* L in λ —empty clause satisfies $\lambda' \leqslant \lambda^* \leqslant \lambda$, λ —empty clause is denoted by λ — \square).

5 λ —weak implication and λ —strong implication

The following results are similar to [3].

Definition 5. 1 Let G and H be formula, $\lambda \in \tilde{N}$. If $(G \rightarrow H)$ is λ —identically true, then

we call $G \ \lambda$ —weak implication H, denoted by $G \Rightarrow H$.

Theorem 5. 1 $(G \rightarrow H)$ is λ —identically true iff $\forall I$ if $T_I(G) > \lambda'$, then $T_I(H) \geqslant \lambda$.

Definition 5. 2 Let G and H be formulas, $\lambda \in \widetilde{N}$. If $\forall I, T_I(G) \geqslant \lambda$, then $T_I(H) \geqslant \lambda$, then we call $G \lambda$ —strong implication H, denoted by $G \stackrel{!}{\Rightarrow} H$.

Proposition 5. 1 If $G \Rightarrow H, \lambda > Un$, then $G \Rightarrow H$; if $G \Rightarrow H, \lambda = Un$, then $G \Rightarrow H$.

Proposition 5. 2 Let G be formula, then (1) when $\lambda \leq U_n, A \Rightarrow A$, (2) $A \Rightarrow A$.

Proposition 5. 3 Let A, B and C be formulas, then

(1) when $\lambda > U_n$, if $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$; (2) if $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$.

Proposition 5. 4 Let A, B and C be formulas, then

(1) if $A \Rightarrow B, A \Rightarrow C$, then $A \Rightarrow (B \land C)$; (2) if $A \Rightarrow B, A \Rightarrow C$, then $A \Rightarrow (B \land C)$.

Theorem 5. 2 Let $\lambda \geqslant Un$. If there exists λ —resolution such that λ —empty clause can be deduced from clause set S by the resolution, then S is λ —identically false.

Theorem 5. 3 Let $\lambda \geqslant Un$, let S be a clause set. Then S is λ —identically false iff there exists λ —resolution such that λ —empty clause can be deduced from clause set S by the resolution.

Keferences

- [1] Liu Xuhua. Fuzzy Logic and Fuzzy Reasoning. Jilin University Press, 1989, P89—111. (in Chinese).
- [2] Luo Chengzhong. Introduction to the fuzzy sets. Beijing Normal University press, 1989, P190-197. (in Chinese).
- [3] Liu Xuhua. Automatic Reasoning Based On Resolution Mathod. Science Press, 1994, P361—367. (in Chinese).