20
Granularity via Non-Deterministic Computations

Vladik Kreinovich! and Bernadette Bouchon-Meunier?

'Department of Computer Science
University of Texas at El Paso

El Paso, TX 79968, USA
email vladikQcs.utep.edu

2LAFORIA-IBP
University Paris VI, Case 169
4, place Jussieu
75252, Paris Ceex 05, France
email bouchon@laforia.ibp.fr

Abstract

We humans usually think in words; to represent our opinion about,
e.g., the size of an object, it is sufficient to pick one of the few (say, five)
words used to describe size (“tiny”, “small”, “medium”, etc.). Indicating
which of 5 words we have chosen takes 3 bits. However, in the modern
computer representations of uncertainty, real numbers are used to rep-
resent this “fuzziness”. A real number takes 10 times more memory to
store, and therefore, processing a real number takes 10 times longer than
it should. Therefore, for the computers to reach the ability of a human
brain, Zadeh proposed to represent and process uncertainty in the com-
puter by storing and processing the very words that humans use, without
translating them into real numbers (he called this idea granularity).

If we try to define operations with words, we run into the following
problem: e.g., if we define “tiny” + “tiny” as “tiny”, then we will have
to make a counter-intuitive conclusion that the sum of any number of
tiny objects is also tiny. If we define “tiny” + “tiny” as “small”, we may
be overestimating the size. To overcome this problem, we suggest to use
non-deterministic (probabilistic) operations with words. For example, in
the above case, “tiny” + “tiny” is, with some probability, equal to “tiny”,
and with some other probability, equal to “small”.



21
1 Granularity is Desirable: The Idea of Zadeh

In [4], L. Zadeh described the following idea:

e We humans usually think in words. When we want to describe the size of
an object we use words like “tiny”, “small”, “medium”, “large”, “huge”.
For each quantity (like size, velocity, distance, etc.), there are usually few
possible words, and we can describe the value by indicating which of these
words best corresponds to the current situation.

In principle, to represent one of, say, 5 possible values, we need only 3
bits.

¢ However, traditional methods of representing the uncertain (“fuzzy”) ex-
pert knowledge use real numbers to describe uncertainty. A real number
usually requires at least 4 bytes (32 bits). Thus, we use at least 10 times
more memory than we should, and when we process these numbers, then,
to process all these bits, we use at least 10 times more time than we should.

For the computers to reach the ability of a human brain, we thus need to develop
new methods of representing and processing uncertainty, methods in which the

representation is granular, in which the computer stores the words and operates
directly with words.

2 The Main Problem of Computing with Words

At first glance, it may seem that computing with words is easy to implement.
For example, to describe the expert’s opinion about the size, we can use one of
the five words given above; to process this data, all we have to do is to describe
addition and other operations for these values.

And here comes a problem: For example, what is “tiny” + “tiny”?

¢ If we assume that “tiny” + “tiny” = “small”, then we may be overesti-
mating the resulting size.

e If we assume that “tiny” + “tiny” = “tiny”, then we will inevitably con-
clude that no matter how many tiny objects we add, we will always end
up with an object of tiny size. This conclusion is clearly not true, be-
cause every object (no matter how huge it is) can be subdivided (at least

mentally) into tiny parts, and thus, the sum of tiny parts can be very
huge.

So what value should we choose for “tiny” + “tiny”? We may try to resolve this
problem by choosing some value intermediate between “tiny” and “small”. The
addition of this new value solves this problem, but créates similar new problems,
for the results of adding more and more terms. We can, of course, solve these



22
new problems by adding new and new intermediate values, but then eventually,

we will lose the very granularity that we are trying to maintain. So, adding a
new intermediate value is not a good solution to this problem.

3 Our Solution: Non-Deterministic Operations

Our idea is as follows: since it is difficult to choose a single, deterministic
value for “tiny” + “tiny”, let us make addition (and other operations) non-
deterministic. In other words, let us assume that with some probability p,
“tiny” + “tiny” = “tiny”, and with the remaining probability 1 — p, “tiny” +
“tiny” = “small”.

It is easy to implement probabilistic operations on modern computers, so
this type of granularity is easy to implement: when, e.g., inputs are “tiny”
and “tiny”, we use a standard computer random number generator to generate
“tiny” with probability p and “small” with probability 1 — p-

4 Formal Description

We start with a finite set of words wy, ..., w,. To define an arbitrary operation
©, we must, for each 1 < n and j < n, define the probabilities p{-‘j that the result

of applying this operation to w; and w; will be equal to wx. We will describe
this probabilistic operation as

w; © wy =p}jw1®...63p?jwn~ (1)

The total probability of getting some result must be equal to 1:

d.p=1 (2)
k

5 Examples

5.1 Example 1: “large” and “small”

Let us first give a simple example of a single positive quantity with two possible
values: “small” (w,) and “large” (w;). In this case, we can take an arbitrary
p € [0, 1] and define the addition as follows: ’

W+ w = wy; (3a)
w4+ w, = w, + wy = wy; (3b)
ws + w, = pw, ® (1 — p)w;. (3¢)

One can easily check that this operation is associative.



23

5.2 Example 2: “positive”, “negative”, and “close to 0”

As a more complicated example, let us take the set of three values w_ (meaning
“negative”), w4 (meaning “positive”), and wo (meaning something like “close
to 0”, or “sign unknown”). The sum of two positive numbers is positive, and
the sum of two negative numbers is negative. Hence, we have

Wi+ Wy = wy (4a)

wo +w-o = w_. (4b)

As for the other sums, symmetry requirements lead to the following formulas:

wo +wy = wy +wo = aw- G aws (1 — 2a)w; (4c)
wo + wp = wo + w_ = fw- & ywy & (1 - B — v)wo; (4d)
wy + wo = wo + wy = fwi & yw- & (1 - B — 7)wo; (4e)

wo + wo = dw_ ® 6w+ 135 (1 - 26)1[)0. (4f)

for some real numbers «, 8, v, and 4.

When a = 8 = v = § = 0, we get associativity. Formulas corresponding to
this case can be easily explained:

e When we know that one of the arguments is positive and the other is
negative, then we do not know the sign of the sum, so, w4 + w-. = wy.

e When we know that one of the arguments is positive, and we do not know
the sign of the other argument, then we do not know the sign of the sum,
SO w4 + wo = Wp.

e Similarly, when we know that one of the arguments is negative, and we do

not know the sign of the other argument, then we do not know the sign
of the sum, so w_ 4+ wy = wo.

Comment. One can prove that this case « = # = 4y = § = 0 is the only case

when formulas (4a — 4f) define an associative operation. The proof is given in
the [2].

5.3 Example 3: “positive” and “negative”

Let us now consider the example of a single quantity with only two values:
positive w; and negative w_, and a single operation: addition. Similarly to
Example 2, we have

Wy + Wy = wy; (5a)
wo +w- =w_. (5b)



24

If we require that the addition operation be invariant with respect to changing
w4 and w_, we get

Wy +wo = w_ +wy = 05wy & 0.5w._. (5¢)

‘Thus defined operation is not associative: namely,

Wi + (g +w_) # (wy + wy) + we. (6)

Indeed, the left-hand side of (6) is equal to w4 + wy (= w,) with probability
0.5, and to wy + w_ with probability 0.5. In the second case, in half of the
cases (i.e., in 256% of the total number of cases), we get w,, and in half of the
cases, we get w_. Thus, we have w; with total probability 0.5 + 0.25 = 0.75,
and w_ with probability 0.25.

However, since the sum wy + w; is equal to w,., the right-hand side is equal
to wy and w_ with probability 0.5.

Comment. Summarizing: in some cases, we cannot have both symmelry and
associativity. So, here is what we lose by using non-deterministic granularity:
we either lose symmetry, or associativity.

In [2], we describe a general source of possible associative operations: lattice-
ordered finite-dimensional algebras [1, 3].

Acknowledgments. This work was partially supported by NASA Grant No.
NAG 9-757. This work was done when V. Kreinovich was an invited professor
at Laforia, University Paris VI, Summer 1996.

The authors are thankful to R. R. Yager for the encouragement.

References

[1] L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, New York,
1963.

[2] V. Kreinovich and B. Bouchon-Meunier, Granularity via non-deterministic
computations: what we gain and what we lose, University of Texas at El
Paso, Department of Computer Science, Technical Report No. UTEP-CS-
96-29, August 1996. Available by £tp from cs.utep.edu, I TgXfile tr96-
29.tex in the directory pub/reports.

[3] S. Lang, Algebra, Addison-Wesley, Reading, MA, 1965.

[4] L. A. Zadeh, Information Granularity, Fuzzy Logic, and Computing with
Words, unpublished talk at the International Conference on Information

Processing and Management of Uncertainty in Knowledge-Based Systems
(IPMU’96), Granada, Spain, July 1, 1996.



