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Abstract Studied is a system of “N” fuzzy relational equations with a max - t composition
x(k) O R = y(k)

where the input - output fuzzy sets (x(k) and y(k)) are available while the fuzzy relation (R) needs to be determined.
The solution to these equations is derived through a new paradigm of specificity shift. The main objective is to
modify a level of specificity of the fuzzy sets (relational constraint) so that the modified constraints allow for the use
of some standard theoretical results of the theory of fuzzy relational equations that otherwise would have been found
totally unjustifiable. In more detail, the specificity of the available input fuzzy sets becomes gradually increased
while an opposite tendency is observed for the output fuzzy sets.
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1. Introduction

In this study we are concerned with an important category of fuzzy relational equations with the
max - t composition

xOR=y
(1)

where “t” is assumed to be a continuous t - norm while x, y and R are viewed as fuzzy sets and a
fuzzy relation defined in finite universes of discourse. The problem of analytical solutions to
these equations has been pursued in the depth; refer e.g., to the monograph by Di Nola et al
(1989) as helpful source of the most extensive coverage of the area; see also Di Nola and
Sessa(1993). On the applied side, these equations call for approximate solutions as quite often no
analytical solutions can be generated. This pursuit has been handled with the aid of various
techniques. The first paper in the area of approximate (numerical) solutions to fuzzy relational
equations was published in 1983 (Pedrycz). The list below concisely summarizes representatives
of the existing methods:

numeric solutions to fuzzy relational equations (gradient - based or gradient -like methods): )lscdrycz(1983),
ang et al (1994),
fuzzy relational equations viewed as fuzzy neural networks and the ensuing use of various learning techniques
pecific to neurocomputing: Blanco et al. (1994), Pedrycz (1991; 1993; 1995), Pedrycz and Rocha (1993), Saito and
izumoto (1992), Valente de Oliveira (1993),Reyes Garcia and Bandler (1994), Ghalia and Alouani (1994).
Data preprocessing of relational constraints: clustering, logical filtering, data elimination, etc. Gottwald (1992),
joltwald and Pedrycz (1986), Hirota (1982), Pedrycz (1985), Hirota and Pedrycz (1996, to appear),
Structural expansion of fuzzy relational equations: Pedrycz (1985)
Probabilistic learning: Ikoma et al. (1993)
Evolutionary computing and hybrid methods (including GA and gradient - based techniques): Pedrycz (1994)

The approach introduced here falls under the category of data preprocessing by proposing the
use to the well known theoretical results to carefully preprocessed data (relational constraints).
The emerging essence is what can be called a specificity shift of relational constraints being
aimed at the higher solvability of the resulting fuzzy relational equations. We briefly lay down
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the problem, introduce basic machinery to be used in the approach and discuss the algorithm.
Numerical experiments are thoroughly reported along with some thoughts on hybrid techniques
used in handling fuzzy relational equations.

2. Problem formulation

The problem is stated accordingly: Given is a collection of fuzzy data (treated as vectors in two
finite unit hygercubes) x(1), y(1)), x(2), y(2)), ..., x(N), yN)) where x(k) € [0,1]" and

y(k) e [0, 1]™. Determine a fuzzy relation R satisfying the collection of the relational constraints
(fuzzy relational equations)

x(k) O R =y(k)
)

Expressing (2) in terms of the corresponding membership functions of x(k), y(k) and R we derive

yiK) = V [xjk)t ry]
i=1

_ 3
k=1, 2, ..., N, j=l, 2, ..., m. The emerging problem can be essentially classified as an interpolation
task where the fuzzy relation R needs to go through all the already specified interpolation points
(fuzzy sets). Assuming that there exists a solution to (2), the theory (Di Nola et al, 1989)
provides us with the solution to the fuzzy interpolation problem given in the form of the maximal
fuzzy relation with the membership function equal to

N

R =M (x(k) -y(k))
k=1

C)
Note that the computations involve an intersection of the individual fuzzy relations determined
via a psuedocomplement (residuation) associated with the t-norm standing in the original system
of equations (2), namely a —»b = sup {c e [0,1]! atc < b}. The main advantage lies in the
simplicity, theoretical soundness, well - articulated properties and compactness of this solution.
The major drawback originates from the fact that the determined result holds under a rather
strong preliminary assumption about the existence of any solution to (2). Now, if this assumption
is evidently violated, the quality of the obtained solution could be very low. This is additionally
aggravated by the fact that the derived solution is extremal (maximal) so that even a single
relational constraint may contribute to the deterioration of the final aggregate result. The use of
the optimization methods leads to better approximate solutions yet the entire procedure could be
quite often time - consuming. Furthermore, as there could be a multiplicity of solutions, such
approaches usually identify only one of them and leaving the rest of them unknown.

In the investigated setting we are interested in making some repairs to the original relational
constraints thus converting the original interpolation nodes into more feasible ones, meaning that
there is a higher likelihood of finding a fuzzy relation capable of doing the interpolation of the
modified constraints. This is accomplished by nonlinearly affecting the data and changing their
membership values. To contrast the scheme of direct computation of R as implied by the theory

refer to Fig.1 where both @(x) and y(y) denote the membership functions resulting from these
nonlinear transformations of the original fuzzy sets forming the interpolation nodes in the initial
problem.
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Fig.1. Determination of a fuzzy relation: (i) original data (x(k), y(k)), (ii) modified data

Thus instead of (4 ), one proceeds with the following expression

N
R=N (@lxk)] >viy®)])
k=1
&)
where both @(x) and y(y) are defined pointwise meaning that
o) = [(x,) O(x)) ... P(x,)]
©6)
and
WY(x) = [W(x,) W(x)) ... y(x,)] -

3. The transformation functions

There are two types of the transformation functions applied to the input and output data. The first
one concerning the input fuzzy sets (x) is defined as a continuous mapping

¢:[0,1] - [0, 1]

such that
- @ is an increasing function of its argument
-(1) =1
-@p(u) <u

The essence of this mapping is to make the original fuzzy set more specific (when evaluated e.g.,
in terms of the specificity measure (Yager, 1983). Two examples of this mapping are shown in
Fig 2.

@ @
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Fig.2. Two examples of specificity - increasing transformations

These functions read as
0,ifu<co
o(u) = {
U-Q ify>o
1-a
®
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and
0,ifu<o
o) = {
u, ifu 2o
©)
For illustrative purposes, let now x be specified as [ 0.2 0.7 0.9 1.0]. Then (8) with o = 0.4
yields
[0.0 0.5 0.83 1.0]

The same fuzzy set transformed via (9) with a = 0.4 provides with the membership function

equal to @(x) =[ 0.0 0.7 0.9 1.0]. Note that the latter transformation is more radical reducing
to zero all the membership values that are lower than the assumed threshold level. The higher the
threshold level, the more significant the deformation of the original fuzzy set.

The second operation of interest in this method applies to the output fuzzy sets (y) and is
introduced as a continuous mapping

y: [0,1] - [0, 1]

such that
- ¥ is increasing
-y(1) =1
-Y(u) 2u

In comparison to the previous operation, the graph of y lies above the main diagonal of the unit
square. Subsequently, the application of this mapping to any fuzzy set makes the resulting fuzzy

set Y(y) less specific than its original counterpart. Two examples of the transforming functions
belonging to this class are visualized in Fig. 3. These are defined explicitly as

Y =(1-Pu+p

(10)
as well as
,ifu<
ww = ( P ifu<h
u, if u 2p
(11)
v v
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Fig.3. Two examples of specificity - decreasing transformations

Once the input output data have been transformed, the calculations of the fuzzy relation are
carried out as described by (3). If, originally, (x(k), y(k)) are very difficult to interpolate and the
theoretical solution could eventually lead to a fairly meaningless fuzzy relation, then the use of
the modified data makes the entire procedure more feasible and realistic. This specificity shift
paradigm that deals with the increased specificity of the input and decreased specificity of the
output data is also intuitively plausible. By increasing and/or decreasing the specificity of the
input and output data, respectively, we ease the complexity of the relational constraints to be
interpolated. To look at this issue in more depth, let us consider two fuzzy relational equations



(two relational constraints)

x(DOR=y(1)
x()OR=y(2)

assuming additionally that each of them is solvable individually. Obviously, this type of solvability
does not imply that these two equations are solvable as a tandem. Observe, however, that if x(1)
and x(2) are made disjoint then the ensuing system of equations is still solvable. Subsequently, to
disjoint x(1) and x(2), one has to make them more specific - this is, in fact, the role of the first

mapping.

Let us discuss a situation where y, #y, while at the same time x, and x, are very similar. No
solution to the system of such equations exists yet the problem could be significantly reduced by
making y, and y, very similar; such a similarity enhancement is accomplished through the
decrease of their specificity.

4. Solving fuzzy relational equations via specificity shift of interpolation constraints

The algorithm combines the theory of the fuzzy relational equations with the heuristics of
specificity shift applied to the input - output data (relational constraints). Let us briefly summarize
the procedure:

1. select cutoff parameters of ¢ and y

2. transform data into a series of pairs (@(x(k)), y(y(k))

3. compute the fuzzy relation with the use of (3)

4. verify the quality of the solution e.g., by calculating a sum of squared distances (MSE
criterion) between y(k) and x(k) I R.

The entire process can be iterated with respect to the values of the cutoff parameters and these
could be optimized so that they imply a minimal value of the MSE criterion (as outlined in the
last phase of the above scheme).

Additionally, the obtained fuzzy relation can be viewed as a sound starting point for any finer
optimization techniques, especially those relying on gradient - based mechanisms. Instead of
being initialized from random fuzzy relations, one can start off the method from the fuzzy
relation already computed in the first phase.

5. Concluding remarks

The specificity shift method can be classified as an approach situated in-between analytical and
numerical methods of solving fuzzy relational equations. It relies on the original structure of the
solution originating from the theory and simultaneously takes advantage of some optimization
mechanisms available in the format of the parametric specificity shift affecting the relational
constraints forming the fuzzy relational equations to be solved. In this sense the optimal threshold
values of the transformation functions provide with a better insight into the character of the data
to be handled especially when it comes to their overall consistency level. Especially, if the
threshold values are high, these could serve as a sound indicator of a significant level of noise
associated with the data; in the sequel one should not expect a superb quality of the fuzzy
relation, no matter which optimization method will be pursued.
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