On Fuzzy Separation Axioms in Intuitionistic Fuzzy Topological Spaces

Sadık Bayhan⁽¹⁾-Doğan Çoker⁽²⁾

Department of Mathematics, Hacettepe University, Beytepe, 06532-Ankara/TURKEY

Department of Mathematics Education, Hacettepe University, Beytepe, 06532-Ankara/TURKEY

Abstract: The purpose of this paper is to investigate several types of separation axioms in intuitionistic fuzzy topological spaces, developed by Coker and et al. [5,6]. After giving some characterizations of separation axioms T_1 and T_2 in intuitionistic fuzzy topological spaces, interrelations between several types of separation axioms and some necessary counterexamples will be given.

Keywords: Intuitionistic fuzzy set; intuitionistic fuzzy topology; intuitionistic fuzzy topological space; intuitionistic fuzzy pair; fuzzy separation.

1. Introduction

After the introduction of the concept of a fuzzy set by Zadeh [17], Atanassov [2,3] has introduced the concept of intuitionistic fuzzy set (IFS for short). Çoker [5,6] has defined intuitionistic fuzzy topological spaces (IFTS's for short).

2. Preliminaries

For the purpose of completeness, we shall give some introductory definitions first:

Definition 2.1. [2,3] Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS for short) A is an object having the form

$$A=\{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}$$

where the functions $\mu_A: X \to I$ and $\gamma_A: X \to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$. For the sake of simplicity, we shall use the symbol $A = \langle x, \mu_A, \gamma_A \rangle$ for the IFS $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle \colon x \in X\}$.

Correspondence to : Sadık Bayhan, Matematik Bölümü, Fen Fakültesi, Hacettepe Universitesi, Beytepe, 06532-Ankara / TURKEY

[[] e-Mail : bayhan@eti.cc.hun.edu.tr]

Every fuzzy set A on a nonempty set X is obviously an IFS having the form A={ $\langle x, \mu_A(x), 1-\mu_A(x) \rangle : x \in X }$ [3].

Definition 2.2. [3,5,6] Let X be a nonempty set, and the IFS's A and B be in the form $A=\{\langle x,\mu_A(x),\gamma_A(x)\rangle:x\in X\}$, $B=\{\langle x,\mu_B(x),\gamma_B(x)\rangle:x\in X\}$, and let $\{A,:i\in J\}$ be an arbitrary family of IFS's in X. Then

- (a) $A \subseteq B$ iff $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$;
- (b) A=B iff $A\subseteq B$ and $B\subseteq A$;
- (c) $\overline{A}=\{\langle x, \gamma_A(x), \mu_A(x) \rangle : x \in X \}$;
- (d) $\bigcap A_i = \{ \langle x, \wedge \mu_{A_i}(x), \vee_{A_i}(x) \rangle : x \in X \}$;
- (e) $\bigcup A_i = \{ \langle x, V \mu_{A_i}(x), \Lambda \gamma_{A_i}(x) \rangle : x \in X \}$;
- (f) $Q = \{ \langle x, 0, 1 \rangle : x \in X \}$ and $1 = \{ \langle x, 1, 0 \rangle : x \in X \}$.

Using the definition of fuzzy topological spaces given by Chang [4], intuitionistic fuzzy topological spaces can be defined as follows:

Definition 2.3. [5,6] An intuitionistic fuzzy topology (IFT for short) on a nonempty set X is a family τ of IFS's in X containing Q, $1 \in \tau$, and closed under finite infima and arbitrary suprema. In this case the pair (X,τ) is called an intuitionistic fuzzy topological space (IFTS for short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS for short) in X. The complement \overline{A} of an IFOS A in an IFTS (X,τ) is called an intuitionistic fuzzy closed set (IFCS for short) in X.

Example 2.4. [5,6] Any fuzzy topological space (X, τ_0) in the sense of Chang is obviously an IFTS in the form $\tau = \{A: \mu_A \in \tau_0\}$ whenever we identify a fuzzy set in X whose membership function is μ_A with its counterpart $A = \{\langle x, \mu_A(x), 1-\mu_A(x)\rangle: x \in X\}$.

Definition 2.5. [5,6] Let A be an IFS in (X, τ) . Then $cl(A)=\cap \{K : K \text{ is an IFCS in } X \text{ and } A\subseteq K\},$ $int(A)=\cup \{G : G \text{ is an IFOS in } X \text{ and } G\subseteq A\}.$

Definition 2.6. [7] Let X be a nonemptyset and $c \in X$ a fixed element in X. If $\alpha \in (0,1]$ and $\beta \in [0,1)$ are two real numbers such that $\alpha + \beta \le 1$, then

- (a) $c(\alpha,\beta) = \langle x,c_{\alpha},1-c_{1-\beta} \rangle$ is called an intuitionistic fuzzy point (IFP for short) in X, where α denotes the degree of membership of $c(\alpha,\beta)$, β the degree of nonmembership of $c(\alpha,\beta)$.
- (b) $c(\beta) = \langle x, 0, 1-c_{1-\beta} \rangle$ is called a vanishing intuitionistic fuzzy point (VIFP for short) in X, where β denotes the degree of nonmembership of $c(\beta)$.

Definition 2.7. [7] (a) Let $c(\alpha,\beta)$ be an IFP in X. and $A=\langle x,\mu_A,\gamma_A\rangle$ an IFS in X. $c(\alpha,\beta)\subseteq A$ is said to be contained in A, $(c(\alpha,\beta)\subseteq A$ for short) iff $c(\alpha,\beta)\subseteq A$. [In other words, $c(\alpha,\beta)\subseteq A$ iff $c_{\alpha}\subseteq \mu_A$ and $1-c_{1-\beta}\supseteq \gamma_A$, or equivalently, $\alpha\subseteq \mu_A(c)$ and $\beta\supseteq \gamma_A(c)$.]

(b) Let $c(\beta)$ be a VIFP in X and A= $\langle x, \mu_A, \gamma_A \rangle$ an IFS in X. $c(\beta)$ is said to be contained in A $(c(\beta) \leq A$ for short) iff $\mu_A(c)=0$ and $1-c_{1-\beta} \geq \gamma_A$, or equivalently, $\mu_A(c)=0$ and $\beta \geq \gamma_A(c)$.)

Products of intuitionistic fuzzy topological spaces

Let (X,τ) and (Y,Φ) be two IFTS's, and $A \in I^X$, $B \in I^Y$. Then the product of A and B is defined b as in [3] by

$$AxB = \{ \langle (x,y), \mu_A(x) \rangle \mu_B(y), \gamma_A(x) \rangle \gamma_B(y) \rangle : (x,y) \in XxY \}$$

Now we can construct the product topology on XxY as the initial IFT on XxY with respect to the projections

$$\pi_1$$
: XxY \rightarrow X, $\pi_1(x,y)=x$ and π_2 : XxY \rightarrow Y, $\pi_2(x,y)=y$.

In this case, the subbase of the product IFT is given by

$$\mathcal{S} \ = \ \{ \ \pi_1^{-1}(T_1) \, , \ \pi_2^{-1}(T_2) \ : \ T_1 {\in} \tau \, , \ T_2 {\in} \Phi \ \}.$$

Hence the base generated by $\mathcal S$ can be written as

$$\mathcal{B} \; = \; \{ \; \; \pi_{1}^{-\mathbf{1}}(\mathtt{T}_{1}) \cap \pi_{2}^{-\mathbf{1}}(\mathtt{T}_{2}) \; : \; \mathtt{T}_{1} {\in} \tau \; , \; \mathtt{T}_{2} {\in} \Phi \; \; \}.$$

Since

$$\pi_{1}^{-1}(T_{1}) \cap \pi_{2}^{-1}(T_{2}) = \langle (x,y), \mu_{T_{1}}(x) \wedge \mu_{T_{2}}(y), \gamma_{T_{1}}(x) \vee \gamma_{T_{2}}(y) \rangle = T_{1}xT_{2},$$
we easily obtain $\mathcal{B} = \{ T_{1}xT_{2} : T_{1} \in \tau, T_{2} \in \Phi \}.$

Definition 2.8. Given the nonempty set X, we define the diagonal Δ as the following IFS in XxX:

$$\Delta = \langle (\mathbf{x}_1, \mathbf{x}_2), \mu_{\Delta}(\mathbf{x}_1, \mathbf{x}_2), \gamma_{\Delta}(\mathbf{x}_1, \mathbf{x}_2) \rangle,$$

where

$$\mu_{\Delta}(\mathbf{x}_{1}, \mathbf{x}_{2}) = \left\{ \begin{array}{ll} 1, & \text{if } \mathbf{x}_{1} = \mathbf{x}_{2} \\ 0, & \text{if } \mathbf{x}_{1} \neq \mathbf{x}_{2} \end{array} \right\} \quad \text{and} \quad \gamma_{\Delta}(\mathbf{x}_{1}, \mathbf{x}_{2}) = \left\{ \begin{array}{ll} 0, & \text{if } \mathbf{x}_{1} = \mathbf{x}_{2} \\ 1, & \text{if } \mathbf{x}_{1} \neq \mathbf{x}_{2} \end{array} \right\}.$$

3. T_1 and T_2 properties in IFTS's

First, we introduce the concept of intuitionistic fuzzy pair:

Definition 3.1. [8] Let a and b be two real numbers in [0,1] satisfying the inequality a+b \leq 1. Then the pair \langle a,b \rangle is called an intuitionistic fuzzy pair.

Definition 3.2. [8] Let $\langle a,b \rangle$, $\langle a_1,b_1 \rangle$, $\langle a_2,b_2 \rangle$, $\langle a_i,b_i \rangle$ (ieJ) be intuitionistic fuzzy pairs. Then we define

(a)
$$\langle a_1, b_1 \rangle \leq \langle a_2, b_2 \rangle \iff a_1 \leq a_2 \text{ and } b_1 \geq b_2$$
,

(b)
$$\langle a_1, b_1 \rangle = \langle a_2, b_2 \rangle \iff a_1 = a_2 \text{ and } b_1 = b_2$$
,

(c)
$$V < a_i, b_i > = < Va_i, \Lambda b_i > \text{ and } \Lambda < a_i, b_i > = < \Lambda a_i, Vb_i > ;$$

(d)
$$\overline{\langle a,b\rangle} = \langle b,a\rangle$$
 (the complement of $\langle a,b\rangle$);

(e)
$$1 = \langle 1, 0 \rangle$$
 and $0 = \langle 0, 1 \rangle$.

Now we shall first define several fuzzy \mathbf{T}_1 -separation axioms:

Definition 3.3. Let (X, τ) be an IFTS.

- (1): (X,τ) is called $FT_1(i)$ iff (a) for each pair of distinct IFP's $x(\alpha,\beta)$ and $y(\xi,\eta)$ in X, there exist $U,V\in\tau$ such that $x(\alpha,\beta)\subseteq U$, $y(\xi,\eta)\not=U$ and $y(\xi,\eta)\subseteq V$, $x(\alpha,\beta)\not=V$.
 - [cf. Srivastava-Lal-Srivastava [15]]
 - (b) for each pair of distinct VIFP's $x(\beta)$ and $y(\eta)$ in X, there exist $U,V \in \tau$ such that $x(\beta) \subseteq U$, $y(\eta) \not\subseteq U$ and $y(\eta) \subseteq V$, $x(\beta) \not\subseteq V$.
- (2): (X,τ) is called $FT_1(ii)$ iff for all $x,y\in X$, $x\neq y$, there exist $U,V\in\tau$ such that U(x)=1, U(y)=0 and V(y)=1, V(x)=0.
 - [cf. Srivastava-Lal-Srivastava [16]]
- (3): (X,τ) is called $FT_1(iii)$ iff (a) for each pair of distinct IFP's $\mathbf{x}(\alpha,\beta)$ and $\mathbf{y}(\xi,\eta)$ in X, there exist $\mathbf{U},\mathbf{V}\in\tau$ such that $\mathbf{x}(\alpha,\beta)\subseteq\mathbf{U}\subseteq\overline{\mathbf{y}(\xi,\eta)}$ and $\mathbf{y}(\xi,\eta)\subseteq\mathbf{V}\subseteq\overline{\mathbf{x}(\alpha,\beta)}$

- [cf. Ghanim-Kerre-Mashhour [11]]
- (b) for each pair of distinct VIFP's $x(\beta)$ and $y(\eta)$ in X, there exist $U, V \in \tau$ such that $x(\beta) \subseteq U \subseteq \overline{y(\eta)}$ and $y(\eta) \subseteq V \subseteq \overline{x(\beta)}$.
- (4): (X,τ) is called $FT_1(iv)$ iff (a) for each pair of distinct IFP's $x(\alpha,\beta)$ and $y(\xi,\eta)$ in X, there exist $U,V\in\tau$ such that $x(\alpha,\beta)\subseteq U,$ $U\cap y(\xi,\eta)=Q$ (i.e. U(y)=0) and $y(\xi,\eta)\subseteq V$, $V\cap x(\alpha,\beta)=Q$ (i.e. V(x)=0).

[cf. Fora [9]]

- (b) for each pair of distinct VIFP's $x(\beta)$ and $y(\eta)$ in X, there exist $U, V \in \tau$ such that $x(\beta) \subseteq U$, U(y) = 0 and $y(\eta) \subseteq V$, V(x) = 0.
- (5): (X,τ) is called $FT_1(v)$ iff (a) for each pair of distinct IFP's $x(\alpha,\beta)$ and $y(\xi,\eta)$ in X, there exist $U,V\in\tau$ such that U(y)=0 and V(x)=0.

[cf. Katsaras [12]]

- (b) for each pair of distinct VIFP's $x(\beta)$ and $y(\eta)$ in X, there exist $U,V\in\tau$ such that U(y)=0 and V(x)=0.
- (6): (X,τ) is called $FT_1(vi) \iff$ for all $x,y\in X$, $x\neq y$, there exist $U,V\in\tau$ such that U(x)>U(y) and V(y)>V(x). [cf. Ali [1]]

Theorem 3.4. Let (X, τ) be an IFTS. Then the following implications are valid:

$$\begin{split} & \operatorname{FT}_{1}(\operatorname{ii}) \iff \operatorname{FT}_{1}(\operatorname{iii}) \ ; \\ & \operatorname{FT}_{1}(\operatorname{ii}) \implies \operatorname{FT}_{1}(\operatorname{i}) \ ; \\ & \operatorname{FT}_{1}(\operatorname{iv}) \iff \operatorname{FT}_{1}(\operatorname{ii}) \ ; \\ & \operatorname{FT}_{1}(\operatorname{iv}) \iff \operatorname{FT}_{1}(\operatorname{v}) \ ; \\ & \operatorname{FT}_{1}(\operatorname{ii}) \implies \operatorname{FT}_{1}(\operatorname{vi}) \ . \end{split}$$

Proof. (FT₁(ii) \Rightarrow FT₁(iii)): (a) Let $x(\alpha,\beta)$ and $y(\xi,\eta)$ be two distinct IFP's in X. Then there exist $U,V\in\tau$ such that U(x)=1, U(y)=0 and V(y)=1, V(x)=0. Then we have $\alpha \le 1=\mu_U(x)$, $\beta \ge 0=\gamma_U(x)$ and $\mu_U(y)=0\le \eta$, $\gamma_U(y)=1\ge \xi$. It is clear that $x(\alpha,\beta)\le U\le y(\xi,\eta)$. The other part can be shown similarly.

(b) Let $x(\beta)$, $y(\eta)$ be two distinct VIFP's in X. Then there exist $0, V \in \tau$ such that U(x)=1, U(y)=0 and V(y)=1, V(x)=0. For $z \neq x$,

 $0 \le \mu_U(z)$, $1 \ge \gamma_U(z)$ and for z = x, $0 \le \mu_U(x)$, $\beta \ge \gamma_U(x) = 0$. Then we have $x(\beta) = \langle z, 0, 1 - x_{1-\beta} \rangle \le U$. For $z \ne y$, $\mu_U(z) \le 1$, $\gamma_U(z) \ge 0$ and for z = y, $0 = \mu_U(y) \le \eta$, $\gamma_U(y) \ge 0$. Then we have $U \le \langle z, 1 - y_{1-\eta}, 0 \rangle = \overline{y(\eta)}$. Thus we conclude that $x(\beta) \le U \le \overline{y(\eta)}$, and similarly, $y(\eta) \le V \le \overline{x(\beta)}$.

 $(\mathrm{FT}_1(\mathrm{iii}) \Rightarrow \mathrm{FT}_1(\mathrm{ii}))\colon (\mathrm{a}) \text{ Let } \mathsf{x} \neq \mathsf{y} \text{ and consider the IFP's } \mathsf{x}(1,0)$ and $\mathsf{y}(1,0)$ in X. Then there exist $\mathsf{U},\mathsf{V} \in \tau$ such that $\mathsf{x}(1,0) \subseteq \mathsf{U} \subseteq \overline{\mathsf{y}(1,0)}$ and $\mathsf{y}(1,0) \subseteq \mathsf{V} \subseteq \overline{\mathsf{x}(1,0)}$. The inclusions $\mathsf{x}(1,0) \subseteq \mathsf{U}$ and $\mathsf{y}(1,0) \subseteq \mathsf{V}$ imply $\mathsf{U}(\mathsf{x})=1$ and $\mathsf{V}(\mathsf{y})=1$. On the other hand, $\mathsf{U}(\mathsf{x})\subseteq \overline{\mathsf{y}(1,0)}=\langle \mathsf{z},1-\mathsf{y}_1,\mathsf{y}_1\rangle$ implies that, for $\mathsf{z} \neq \mathsf{y}$, $\mu_{\mathsf{U}}(\mathsf{z})\leq 1$, $\gamma_{\mathsf{U}}(\mathsf{z})\geq 0$ and for $\mathsf{z}=\mathsf{y}$, $\mu_{\mathsf{U}}(\mathsf{y})=0\leq \eta$, $\gamma_{\mathsf{U}}(\mathsf{y})\geq 0$. Then we have $\mathsf{U}(\mathsf{y})=0$. It can be shown similarly that $\mathsf{V}(\mathsf{x})=0$.

(b) Let $x\neq y$, and consider the VIFP's x(0) and y(0) in X. Then there exist $U, V \in \tau$ such that $x(0) \subseteq U \subseteq \overline{y(0)}$ and $y(0) \subseteq V \subseteq \overline{x(0)}$, from which U(x)=1, U(y)=0 and V(y)=1, V(x)=0 follow.

 $(\mathsf{FT}_1(\mathsf{i}\mathsf{i}) \Rightarrow \mathsf{FT}_1(\mathsf{i})) \colon (\mathsf{a}) \text{ Let } \mathsf{x} \neq \mathsf{y}, \text{ and } \mathsf{x}(\alpha,\beta), \ \mathsf{y}(\xi,\eta) \text{ be two distinct IFP's in X. Then there exist } \mathsf{U},\mathsf{V} \in \tau \text{ such that } \mathsf{U}(\mathsf{x}) = \mathsf{1}^\mathsf{T}, \mathsf{U}(\mathsf{y}) = \mathsf{0}^\mathsf{T} \text{ and } \mathsf{V}(\mathsf{y}) = \mathsf{1}^\mathsf{T}, \ \mathsf{V}(\mathsf{x}) = \mathsf{0}^\mathsf{T}. \text{ Then we have } \langle \alpha,\beta \rangle \leq \mathsf{1}^\mathsf{T} = \mathsf{U}(\mathsf{x}), \\ \mathsf{x}(\alpha,\beta) \leq \mathsf{U} \text{ and } \langle \xi,\eta \rangle \leq \mathsf{1}^\mathsf{T} = \mathsf{V}(\mathsf{y}), \ \mathsf{y}(\xi,\eta) \leq \mathsf{V}. \ \mathsf{U}(\mathsf{y}) = \mathsf{0}^\mathsf{T} \Longrightarrow \mu_{\mathsf{U}}(\mathsf{y}) = \mathsf{0}, \ \gamma_{\mathsf{U}}(\mathsf{y}) = \mathsf{1} \\ \Longrightarrow \ \mathsf{y}(\xi,\eta) \not\leq \mathsf{U}. \ \mathsf{V}(\mathsf{x}) = \mathsf{0}^\mathsf{T} \text{ implies that } \mu_{\mathsf{V}}(\mathsf{x}) = \mathsf{0}, \ \gamma_{\mathsf{V}}(\mathsf{x}) = \mathsf{1}, \ \text{and then } \\ \mathsf{x}(\alpha,\beta) \not\leq \mathsf{V} \text{ follows. Hence } \mathsf{FT}_1(\mathsf{i}) \text{ is true.}$

(b) Let $x(\beta)$, $y(\eta)$ be two distinct VIFP's in X. Then there exist $U, V \in \tau$ such that U(x) = 1, U(y) = 0 and V(y) = 1, V(x) = 0. For $z \neq x$, $0 \leq \mu_U(z)$, $1 \geq \gamma_U(z)$ and for z = x, $\mu_U(x) = 1$, $\beta \geq \gamma_U(x) = 0$. Then we have $\langle z, 0, 1 - x_{1-\beta} \rangle \leq U$. On the other hand, for $z \neq y$, $0 \leq \mu_U(z)$, $1 \geq \gamma_U(z)$ and for z = y, $0 = \mu_U(y)$, $\gamma_U(y) = 1$. But $\eta \geq \gamma_U(y) = 1$ does not hold, since $\eta < 1$. Hence $\langle z, 0, 1 - y_{1-\eta} \rangle = y(\eta) \not\leq U$. $y(\eta) \leq V$ and $x(\beta) \not\leq V$ can be proved similarly.

 $(FT_1(iv) \iff FT_1(ii)), (FT_1(iv) \iff FT_1(v)) \text{ and } (FT_1(ii) \implies FT_1(vi))$: They are obvious. \blacksquare

Counterexample 3.5. Let $X=\{a,b\}$ and define the IFS's U,V as follows: U=<x, (0.5,0.4), (0.3,0.4), V=<x, (0.2,0.3), (0.7,0.6).

Definition 3.6. Let (X, τ) be an IFTS.

- (1): (X,τ) is called $FT_2(i)$ iff for all $x,y\in X$, $x\neq y$, there exist $U,V\in\tau$ such that U(x)=1, V(y)=1 and $U\cap V=Q$. [cf. Gantner-Steinlage-Warren [10]]
- (2): (X,τ) is called $FT_2(ii)$ iff (a) for each pair of distinct IFP's $x(\alpha,\beta)$ and $y(\xi,\eta)$ in X, $\exists U,V\in\tau: x(\alpha,\beta)\subseteq U,y(\xi,\eta)\subseteq V$ and $U\cap V=Q$.
 - [cf. Srivastava-Lal-Srivastava [14]]
 - (b) for each pair of distinct VIFP's $x(\beta)$ and $y(\eta)$ in X, there exist $U,V\in\tau$ such that $x(\beta)\subseteq U$, $y(\eta)\subseteq V$ and $U\cap V=Q$.
- (3): (X,τ) is called $FT_2(iii)$ iff for all $x,y\in X$, $x\neq y$, there exist $U,V\in \tau$ such that $U(x)\neq 0$, $V(y)\neq 0$ and $U\cap V=Q$.
 - [cf. Katsaras [12]]
- (4): (X,τ) is called $\mathrm{FT}_2(\mathrm{iv})$ iff (a) for each pair of distinct $\mathrm{IFP's}\ \mathrm{x}(\alpha,\beta)$ and $\mathrm{y}(\xi,\eta)$ in X, there exist $\mathrm{U},\mathrm{V}\!\in\!\tau$ such that $\mathrm{x}(\alpha,\beta)\!\subseteq\!\mathrm{U}\!\subseteq\!\overline{\mathrm{y}(\xi,\eta)},\ \mathrm{y}(\xi,\eta)\!\subseteq\!\mathrm{V}\!\subseteq\!\overline{\mathrm{x}(\alpha,\beta)}$ and $\mathrm{U}\!\subseteq\!\overline{\mathrm{V}}$.
 - [cf. Ghanim-Kerre-Mashhour [11]]
 - (b) for each pair of distinct VIFP's $x(\beta)$ and $y(\eta)$ in X, there exist $U, V \in \tau$ such that $x(\beta) \subseteq U \subseteq \overline{y(\eta)}, y(\eta) \subseteq V \subseteq \overline{x(\beta)}$ and $U \subseteq \overline{V}$.
- (5): (X,τ) is called $FT_2(v)$ iff for all $x,y\in X$, $x\neq y$, there exist $U,V\in\tau$ such that U(x)=1=V(y), U(y)=0=V(x) and $U\subseteq \overline{V}$. [cf. Srivastava-Ali [13]]

(6): (X, τ) is called $FT_2(vi)$ iff Δ is an IFCS in the product IFTS $(X \times X, \tau_{X \times X})$.

Theorem 3.7. Let (X, τ) be an IFTS. Then the following implications are valid:

Proof. (FT₂(i) \Rightarrow FT₂(v)): This inclusion is obvious.

 $(FT_2(i) \Rightarrow FT_2(ii))$: (a) Let $x(\alpha,\beta)$ and $y(\xi,\eta)$ be two distinct IFP's in X. Then there exist $U,V \in \tau$ such that U(x)=1, V(y)=1 and $U \cap V = \emptyset$. Then we have $(\alpha,\beta) \le 1 = U(x)$, $(\xi,\eta) \le 1 = V(y)$, and hence $x(\alpha,\beta) \le U$ and $y(\xi,\eta) \le V$ follow. Other properties can be shown similarly.

(b) Let $x(\beta)$ and $y(\eta)$ be two distinct VIFP's in X. Then there exist $U, V \in \tau$ such that U(x)=1, V(y)=1 and $U \cap V = Q$. We have for $z \neq x$ $0 \le \mu_U(z)$, $1 \ge \gamma_U(z)$ and for z = x, $0 \le \mu_U(x)$, $\beta \ge \gamma_U(x) = 0$. Hence we obtain $x(\beta) = \langle z, 0, 1 - x_{1-\beta} \rangle \le U$ and, similarly, $y(\eta) = \langle z, 0, 1 - y_{1-\eta} \rangle \le V$.

 $(FT_2(ii) \Rightarrow FT_2(iii))$: Let $x(\alpha,\beta)$ and $y(\xi,\eta)$ be two distinct IFP's in X. Then there exist $U,V \in \tau$ such that $x(\alpha,\beta) \subseteq U, y(\xi,\eta) \subseteq V$ and $U \cap V = Q$. From the first inclusion we get $(\alpha,\beta) \subseteq U(x)$, where $\alpha \neq 0$, $\beta \neq 1$, and from the other inclusion we get $(\xi,\eta) \subseteq V(y)$, where $\xi \neq 0$, $\eta \neq 1$. Thus we have $U(x) \neq 0$, $V(y) \neq 0$. Other properties can be shown similarly.

 $(FT_2(iv) \Rightarrow FT_2(v)) \colon \text{Let } x,y \in X, \ x \neq y \colon \text{We consider the IFP's } x(1,0) \\ \text{and } y(1,0) \colon \text{Then there exist } U,V \in \tau \quad \text{such that } x(1,0) \subseteq U \subseteq \overline{y(1,0)}, \\ y(1,0) \subseteq V \subseteq \overline{x(1,0)} \quad \text{and } U \subseteq \overline{V}. \quad \text{From these inclusions we obtain} \\ \langle 1,0\rangle \subseteq U(x) \subseteq \langle 1,0\rangle, \quad \langle 1,0\rangle \subseteq V(y) \subseteq \langle 1,0\rangle \quad \text{and} \quad \langle 0,1\rangle \subseteq U(y) \subseteq \langle 0,1\rangle, \\ \langle 0,1\rangle \subseteq V(x) \subseteq \langle 0,1\rangle. \quad \text{Thus } U(x)=1 = V(y), \ U(y)=0 = V(x) \quad \text{and} \quad U \subseteq \overline{V} \quad \text{follow directly.}$

 $(FT_2(v) \Rightarrow FT_2(iv))$: (a) Let $x(\alpha,\beta)$ and $y(\xi,\eta)$ be two distinct IFP's in X. By our hypothesis, there exist U,V $\in \tau$ such that

 $\xi \leq 1 = \mu_{V}(y), \quad \eta \geq 0 = \gamma_{V}(y) \quad \text{and} \quad \mu_{H}(y) = 0 \leq \eta, \quad \gamma_{H}(y) = 1 \geq \xi, \quad \mu_{V}(x) = 0 \leq \beta,$ $\gamma_{V}(x)=1\geq \alpha$, hence $x(\alpha,\beta)\leq U\leq \overline{y(\xi,\eta)},\ y(\xi,\eta)\leq V\leq \overline{x(\alpha,\beta)}$ and $U\leq \overline{V}$ follow, as required.

(b) Let $x(\beta)$, $y(\eta)$ be two distinct VIFP's in X. Since $x\neq y$, there exist $U,U\in\tau$ such that U(x)=1=V(y), U(y)=0=V(x) and $U\subseteq \overline{V}$. We have for $z\neq x$, $0\leq \mu_{||}(z)$, $1\geq \gamma_{||}(z)$ and for z=x $0\leq \mu_{||}(x)$, $\beta\geq \gamma_{||}(x)=0$. Hence we get $x(\beta) = \langle z, 0, 1-x_{1-\beta} \rangle \le U$. For $z \ne y$, $\mu_U(z) \le 1$, $\gamma_U(z) \ge 0$ and for z = y, $0=\mu_{\bigcup}(y)\leq\eta,\ \gamma_{\bigcup}(y)\geq0.\ \text{Then } \ U\leq\langle z,1-y_{1-\eta},0\rangle=\overline{y(\eta)},\ x(\beta)\subseteq U\subseteq\overline{y(\eta)}\ \text{and,}$ similarly, $y(\eta) \subseteq V \subseteq \overline{x(\beta)}$ follow.

 $(FT_2(i) \Rightarrow FT_2(iv))$: [Notice that $FT_2(iv) \iff FT_2(v)$] Since $U \cap V = Q$ \Longrightarrow $U\subseteq\overline{V}$, this implication is obvious.

 $(FT_2(i) \Rightarrow FT_2(vi))$: First of all, we may write down

 $\overline{\Delta} = (\mathbf{U}\{\ (x,y)(\alpha,\beta)\ : (x,y)(\alpha,\beta) \le \overline{\Delta}\}) \cup (\mathbf{U}\{\ (x,y)(\beta)\ : (x,y)(\beta) \le \overline{\Delta}\}).$

Now let $(x,y)(\alpha,\beta) \leq \overline{\Delta}$. But this means that $0 < \alpha \leq \mu_{\overline{\Delta}}(x,y) = \gamma_{\overline{\Delta}}(x,y) = 1 \Longrightarrow$ $x \neq y$. Hence, there exist $U, V \in \tau$ such that U(x) = 1, V(y) = 1 and $U \cap V = Q$, $(x,y)(\alpha,\beta) \leq UxV \leq \overline{\Delta}$. Similarly, if from which we obtain $(x,y)(\beta) \le \overline{\Delta}$, then from $1>\beta \ge \gamma_{\overline{\Lambda}}(x,y)=\mu_{\overline{\Lambda}}(x,y)=0$, we get $x\ne y$. Hence, there exist $U, V \in \tau$ such that U(x)=1, V(y)=1 and $U \cap V=\emptyset$, from which we again obtain $(x,y)(\beta) \leq UxV \leq \overline{\Delta}$. Therefore $\overline{\Delta}$ is an IFOS in XxX, in other words, Δ is an IFCS in XxX \Longrightarrow (X, τ) is FT₂(vi).

Couterexample 3.8. Let X={a,b} and we consider IFS's U,V as follows: $U=\langle x, (0.4, 0.0), (0.1, 1.0) \rangle,$ V=< x, (0.0, 0.3), (1.0, 0.2) >.

The family $\tau = \{0,1,U,V,U \cup V\}$ is an IFT on X. Then (X,τ) is $FT_2(iii)$, but not FT₂(ii). This is because for α =0.5, β =0.4 and ξ =0.5, η =0.3, the property (a) of $FT_2(ii)$ does not hold.

Counterexample 3.9. Let X={a,b,c} and define the IFS's A,B,C,D,E,F as follows:

Let τ denote the IFT on X generated by the subbase $\mathcal{S}=\{A,B,C,D,E,F\}$. Then (X,τ) is $FT_2(v)$, but not $FT_2(i)$. Indeed, if we consider the distinct elements a and b in X, and

$$U=A=< x$$
, (1.0, 0.0, 0.1), (0.0, 1.0, 0.4) >, $V=C=< x$, (0.0, 1.0, 0.3), (1.0, 0.0, 0.2) >,

then we have $U(a)=1^{2}=V(b)$, but the condition $U \cap V = Q$ is not satisfied.

Theorem 3.10. Let (X, τ) be an IFTS. Then

$$\begin{aligned} & \text{FT}_2(\text{v}) \Rightarrow & \text{FT}_1(\text{ii}) \text{ ,} \\ & \text{FT}_2(\text{iv}) \Rightarrow & \text{FT}_1(\text{iii}) \text{ .} \end{aligned}$$

Proof. Obvious.

REFERENCES

- [1] D. M. Ali, Some weaker separation axioms in fuzzy topological spaces, *Applied Mathematics* 3 (1988) 1-7.
- [2] K. Atanassov, Intuitionistic fuzzy sets, in: V. Sgurev, Ed., VII ITKR's Session, Sofia, June 1983, (Central Sci. and Tech. Library, Bulg. Academy of Sciences, 1984).
- [3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- [4] C. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- [5] D. Coker, An introduction to intuitionistic fuzzy topological spaces, to appear in *Fuzzy Sets and Systems*.
- [6] D. Çoker and A. Haydar Eş, On fuzzy compactness in intuitionistic fuzzy topological spaces, Journal of Fuzzy Mathematics 3-4 (1995) 899-909.
- [7] D. Coker and M. Demirci, On intuitionistic fuzzy points, Notes on IFT 2-1 (1995) 78-83.
- [8] D. Çoker and M. Demirci, Fuzzy inclusion in the intuitionistic sense, to appear in *Journal of Fuzzy Mathematics*.
- [9] A. A. Fora, Separation axioms for fuzzy spaces, *Fuzzy Sets and Systems* 33 (1989) 59-75.

- [10] T. E. Gantner, R. C. Steinlage and R. H. Warren, Compactness in fuzzy topological spaces, *J. Math. Anal. Appl.* 62 (1978) 547-562.
- [11] M. H. Ghanim, E. E. Kerre and A. S. Mashhour, Separation axioms, subspaces and sums in fuzzy topology, *J. Math. Anal. Appl.* 102 (1984) 189-202.
- [12] A. K. Katsaras, Ordered fuzzy topological spaces, J. Math. Anal. Appl. 84 (1981) 44-58.
- [13] A. K. Srivastava and D. M. Ali, A comparison of some FT₂ concepts, Fuzzy Sets and Systems 23 (1987) 289-294.
- [14] R. Srivastava, S. N. Lal and A. K. Srivastava, Fuzzy Hausdorff topological spaces, *J. Math. Anal. Appl.* 81 (1981) 497-506.
- [15] R. Srivastava, S. N. Lal and A. K. Srivastava, Fuzzy T₁ topological spaces, J. Math. Anal. Appl. 102 (1984) 442-448.
- [16] R. Srivastava, S. N. Lal and A. K. Srivastava, On T₁ topological spaces, *J. Math. Anal. Appl.* 136 (1988) 124-130.
- [17] L. A. Zadeh, Fuzzy sets, *Information and Control* 8 (1965) 338-353.