AN INTRODUCTION TO INTUITIONISTIC FUZZY TOPOLOGICAL SPACES IN SOSTAK'S SENSE

Doğan Çoker (1)-Mustafa Demirci (2)

Department of Mathematics Education, Hacettepe University,

Beytepe, 06532-Ankara / TURKEY

Abstract: In this paper we introduce intuitionistic fuzzy topological spaces in Sostak's sense and define the fuzzy compactness spectrum by means of right fuzzy inclusion.

Keywords: Intuitionistic fuzzy set; intuitionistic fuzzy pair; right fuzzy inclusion; intuitionistic fuzzy topology in Sostak's sense; intuitionistic fuzzy topological space in Sostak's sense; fuzzy continuity; fuzzy compactness spectrum.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [15], and later Chang [4] defined fuzzy topological spaces. These spaces and its generalizations are later studied by several authors, one of which, developed by Sostak [13,14], used the idea of degree of openness. This type of generalization of a fts was later rephrased by Chattopadhyay, Hazra and Samanta in 1992 [5], and by Ramadan in 1992 [12] (cf. [10] also) (He generalized the same idea under the name of "smooth topological space" using lattices in the following manner: Let L and L' be two lattices which will be copies of [0,1] and [0,1], respectively. Then, a smooth topological space is a pair (X,τ) , where X is a nonempty set and τ : L \rightarrow L' is a mapping satisfying (T1), (T2) and (T3).)

In 1983, Atanassov introduced the concept of "intuitionistic fuzzy set" [1,2,3]. Using this type of generalized fuzzy set, Coker [6,7] defined "intuitionistic fuzzy topological spaces".

2. Preliminaries

For the sake of completeness, first we give the concept of intuitionistic fuzzy set defined by Atanassov:

Department of Mathematics, Abant izzet Baysal University, 14280-Bolu / TURKEY

Definition 2.1. [1,2,3] Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS for short) A is an object having the form

$$A=\{\ \langle x,\mu_{A}(x),\gamma_{A}(x)\rangle : x\in X\ \}$$

where the functions $\mu_A:X\to I$ and $\gamma:X\to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) of each element $x\in X$ to the set A, respectively, and $0\leq \mu_A(x)+\gamma_A(x)\leq 1$ for each $x\in X$.

Definition 2.2. [3,6,7] Let X be a nonempty set, and the IFS's A and B in X be in the form

 $^{A=\{<x,\,\mu_A(x),\,\gamma_A(x)>:\,x\in X\}},\;\; B=\{<x,\mu_B(x),\gamma_B(x)>:\,x\in X\}\;\;.$ Furthermore, let $\{A_i:i\in J\}$ be an arbitrary family of IFS's in X. Then

- (a) $A \subseteq B$ iff $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$;
- (b) A=B iff A⊆B and B⊆A;
- (c) $\overline{A}=\{\langle x, \gamma_A(x), \mu_A(x) \rangle : x \in X \}$;
- (d) $\bigcap A_i = \{\langle x, A \mu_{A_i}(x), V \gamma_{A_i}(x) \rangle : x \in X \}$;
- (e) $UA_i = \{\langle x, V \mu_{A_i}(x), \Lambda \gamma_{A_i}(x) \rangle : x \in X \}$;
- (f) []A={ $\langle x, \mu_A(x), 1-\mu_A(x) \rangle$: $x \in X$ };
- (g) $\langle A=\{\langle x,1-\gamma_A(x),\gamma_A(x)\rangle : x\in X\}$;
- (h) $Q = \{ \langle x, 0, 1 \rangle : x \in X \}$ and $1 = \{ \langle x, 1, 0 \rangle : x \in X \}$.

Here are the basic properties of inclusion and complementation:

Corollary 2.3. [6,7] Let A, B, C be IFS's in X. Then

- (a) $A \subseteq B$ and $B \subseteq C \implies A \subseteq C$
- (b) ASB and CSD \Longrightarrow AUCSBUD and ACSBOD
- (c) $A_i \subseteq B$ for each $i \in J \iff \bigcup A_i \subseteq B$
- (d) $B \subseteq A_i$ for each $i \in J \iff B \subseteq \bigcap A_i$
- (e) UA_i=∩A_i

- $(f) \ \overline{\cap A_i} = \bigcup \overline{A_i}$
- $(g) A \subseteq B \iff \overline{B} \subseteq \overline{A}$
- (h) (Ā) =A

(i) <u>1</u>=0

 $(j) \overline{Q} = 1$

Here we define the preimages and images of IFS's under the function $f: X \rightarrow Y:$

Definition 2.4. [6,7]

(a) If $B=\{\langle y,\mu_B(y),\gamma_B(y)\rangle:y\in Y\}$ is an IFS in Y, then the preimage of B under f, denoted by $f^{-1}(B)$, is the IFS in X defined by

$$f^{-1}(B) = \{ \langle x, f^{-1}(\mu_B)(x), f^{-1}(\gamma_B)(x) \rangle : x \in X \}.$$

(b) If $A=\{\langle x,\lambda_A(x),\vartheta_A(x)\rangle:x\in X\}$ is an IFS in X, then the image of A under f, denoted by f(A), is the IFS in Y defined by

$$f(A) = \{ \langle y, f(\lambda_A)(y), f_{-}(\vartheta_A)(y) \rangle : y \in Y \},$$

where $f_{(\vartheta_{\Delta})=1-f(1-\vartheta_{\Delta})}$.

Corollary 2.5. [6,7] Let A, A, (i \in J) be IFS's in X, B, B, (j \in K) IFS's in Y and f : X \rightarrow Y a function. Then

(a)
$$A_1 \subseteq A_2 \Longrightarrow f(A_1) \subseteq f(A_2)$$

(b)
$$B_1 \subseteq B_2 \implies f^{-1}(B_1) \subseteq f^{-1}(B_2)$$

(c)
$$f^{-1}(UB_j)=Uf^{-1}(B_j)$$

(d)
$$f^{-1}(\bigcap B_{j}) = \bigcap f^{-1}(B_{j})$$

(e)
$$f^{-1}(\overline{B}) = f^{-1}(B)$$

3. Fuzzy inclusion in the intuitionistic sense

Given the nonempty set X, we shall denote the family of all IFS's in X by the symbol ${\cal F}^X$. Now we shall present a supplementary tool, called "intuitionistic fuzzy pair" which is first introduced in [8]:

Definition 3.1. [8] Let a and b be two real numbers in [0,1] satisfying the inequality a+b \leq 1. Then the pair \langle a,b \rangle is called an intuitionistic fuzzy pair.

Let (a_1,b_1) , (a_2,b_2) be two intuitionistic fuzzy pairs. Then we define

(a)
$$\langle a_1, b_1 \rangle \leq \langle a_2, b_2 \rangle \iff a_1 \leq a_2 \text{ and } b_1 \geq b_2$$
.

(b)
$$\langle a_1, b_1 \rangle = \langle a_2, b_2 \rangle \iff \langle a_1, b_1 \rangle \leq \langle a_2, b_2 \rangle \text{ and } \langle a_1, b_1 \rangle \geq \langle a_2, b_2 \rangle.$$

(c) If { $< a_i, b_i > : i \in J$ } is a family of intuitionistic fuzzy pairs, then

$$V < a_i, b_i > = < Va_i, \land b_i >$$
 and $\land < a_i, b_i > = < \land a_i, \lor b_i >$.

Definition 3.2. [8] The complement of an intuitionistic fuzzy pair (a,b) is the intuitionistic fuzzy pair defined by (a,b)=(b,a).

Definition 3.3. [8] $1^{\circ} = \langle 1, 0 \rangle$ and $0^{\circ} = \langle 0, 1 \rangle$.

comes a corollary stating the relations between intuitionistic fuzzy pairs:

Corollary 3.4. [8]

- (1) $\langle a,b\rangle \leq \langle c,d\rangle$ and $\langle c,d\rangle \leq \langle e,f\rangle \implies \langle a,b\rangle \leq \langle e,f\rangle$;
- $(2) \langle a,b\rangle \leq \langle c_i,d_i\rangle \text{ for each } i\in J \implies \langle a,b\rangle \leq \bigwedge(c_i,d_i\rangle ;$ $(3) \langle c_i,d_i\rangle \leq \langle a,b\rangle \text{ for each } i\in J \implies \bigvee \langle c_i,d_i\rangle \leq \langle a,b\rangle ;$
- $(4) \overline{\langle a,b\rangle} \leq \overline{\langle c,d\rangle} \iff \langle a,b\rangle \geq \langle c,d\rangle ;$

(5)
$$\overline{V\langle c_i, d_i \rangle} = \Lambda \overline{\langle c_i, d_i \rangle}$$
; (6) $\overline{\Lambda\langle c_i, d_i \rangle} = V\overline{\langle c_i, d_i \rangle}$.

Definition 3.5. [8] Let X be a nonempty set. Then the right fuzzy inclusion, denoted by \cong , is the IFS on $\mathscr{F}^{\mathsf{X}}{}_{\mathsf{X}}\mathscr{F}^{\mathsf{X}}$ defined by

$$\mu_{\stackrel{\frown}{\simeq}}(A,B)=\inf\{\ (\gamma_A\sim\mu_B)(x)\ :\ x\in X\ \}\ \text{ and}$$

$$\gamma_{\stackrel{\frown}{\simeq}}(A,B)=\sup\{\ (\mu_A\wedge\gamma_B)(x)\ :\ x\in X\ \},$$

for each A,B $\in \mathcal{F}^{X}$. Here $\mu_{\succeq}(A,B)$ denotes the degree of inclusion of A in B, while $\gamma_{lpha}(A,B)$ denotes the degree of noninclusion of A in B.

It is easy to show that the pair $\langle \mu_{\succeq}(A,B), \gamma_{\succeq}(A,B) \rangle$ is indeed an intuitionistic fuzzy pair:

Definition 3.6. [8] For any two IFS's A,B $\in \mathcal{F}^{X}$, the intuitionistic fuzzy pair $\langle \mu_{\succeq}(A,B), \gamma_{\succeq}(A,B) \rangle$ will be denoted by [A \cong B], i.e.

$$[A \underset{\sim}{\angle} B] = \langle \mu_{\underset{\sim}{\angle}}(A,B), \gamma_{\underset{\sim}{\angle}}(A,B) \rangle .$$

Here we list some of the basic properties of right fuzzy inclusion:

Proposition 3.7. [8] Assume that A,B,C,D are IFS's in X. the following properties hold:

- (1) If A⊆B and C⊇D, then [A≧C]≥[B≧D] .
- (2) [ĀZĒ]=[BZA]

- (3) $[AUB \cong C \cap D] \leq [A \cong C] \setminus [B \cong D]$
- (4) [A≧C]~[B≧D]≤[A∩B≧CUD]
- (5) [A∩BZQ]=[AZB]=[1ZĀUB]
- (6) If $\{B_i : i \in J\} \subseteq \mathcal{F}^X$, then

$\Lambda[A \cong B_i] = [A \cong \cap B_i]$ and $\Lambda[B_i \cong A] = [\bigcup B_i \cong A]$.

Now we present the properties of fuzzy inclusion related to images and preimages:

Proposition 3.8. [8] Assume that A, B are IFS's in X and C, D are IFS's in Y. If $f: X \to Y$ is a function, then the following properties hold:

- (1) $[A \succeq B] \leq [f(A) \succeq f(B)]$. If, furthermore, f is injective, then $[A \succeq B] = [f(A) \succeq f(B)]$.
- (2) $[C \cong D] \leq [f^{-1}(C) \cong f^{-1}(D)]$. If, furthermore, f is surjective, then $[C \cong D] = [f^{-1}(C) \cong f^{-1}(D)]$.
- $(3) \ [A \cong f^{-1}(f(A))] \leq [f(A) \cong f(A)], \qquad [f^{-1}(f(A)) \cong A] \leq [A \cong A],$ $[f(f^{-1}(C)) \cong C] \leq [f^{-1}(C) \cong f^{-1}(C)], \quad [C \cong f(f^{-1}(C))] \leq [C \cong C].$
- (4) [f(A) ℃C]=[A ℃f⁻¹(C)].
- (5) If $\{C_i : i \in J\} \subseteq \mathscr{S}^Y$, then $[f(A) \succeq \cup C_i] = [A \succeq \cup f^{-1}(C_i)].$
- (6) If $\{A_i: i \in J\} \subseteq \mathcal{F}^X$, then $[f(\cap A_i) \cong \mathbb{C}] = [\cap A_i \cong f^{-1}(\mathbb{C})].$

In order to obtain intuitionistic fuzzy topological spaces we need to define the concept "intuitionistic fuzzy family":

Definition 3.9. [8] An IFS $\mathscr F$ on the set $\mathscr F^{\mathsf X}$ is called an intuitionistic fuzzy family (IFF for short) on $\mathsf X$. In symbols, we shall denote such an IFF in the form $\mathscr F=<\mu_{\mathscr F},\gamma_{\mathscr F}>$.

Definition 3.10. [8] Let $\mathscr F$ be an IFF on X. Then the IFF of complemented IFS's on X is defined by $\mathscr F^*=<\mu_{\mathscr F}*,\gamma_{\mathscr F}*>$, where

 $\mu_{\mathcal{F}} * (\mathsf{A}) = \mu_{\mathcal{F}} (\overset{-}{\mathsf{A}}) \quad \text{and} \quad \gamma_{\mathcal{F}} * (\mathsf{A}) = \gamma_{\mathcal{F}} (\overset{-}{\mathsf{A}})$ for each $\mathsf{A} \in \mathcal{F}^\mathsf{X}$.

4. Intuitionistic fuzzy topological spaces in Sostak's sense Now we give the basic definitions and properties of intuitionistic fuzzy topological spaces in Sostak's sense, which is a generalized form of "fuzzy topological spaces" developed by Sostak [13,14]. For the sake of brevity, we shall use the following notation: If τ is an IFF on X, then, for any $A \in \mathcal{F}^{X}$, we can construct

the intuitionistic fuzzy pair $<\mu_{\tau}({\rm A}),\gamma_{\tau}({\rm A})>$, and use the symbol $\tau({\rm A})=<\mu_{\tau}({\rm A}),\gamma_{\tau}({\rm A})>$.

Definition 4.1. An intuitionistic fuzzy topology in Sostak's sense (So-IFT for short) on a nonempty set X is an IFF τ on X satisfying the following axioms:

(T1)
$$\tau(Q)=1$$
 and $\tau(Q)=1$;

(T2)
$$\tau(A_1 \cap A_2) \ge \tau(A_1) \wedge \tau(A_2)$$
 for any $A_1, A_2 \in \mathcal{F}^X$;

(T3)
$$\tau(\bigcup A_i) \ge \Lambda \tau(A_i)$$
 for any $\{A_i : i \in J\} \subseteq \mathcal{F}^X$.

In this case the pair (X,τ) is called an intuitionistic fuzzy topological space in Sostak's sense (So-IFTS for short). For any $A \in \mathcal{F}^X$, the number $\mu_{\tau}(A)$ is called the openness degree of A, while $\gamma_{\tau}(A)$ is called the nonopenness degree of A.

Definition 4.2. Let (X,τ_1) , (X,τ_2) be two So-IFTS's on X. Then τ_1 is said to be contained in τ_2 (in symbols, $\tau_1 \leq \tau_2$) if $\tau_1(A) \leq \tau_2(A)$ for each $A \in \mathcal{F}^X$. In this case, we also say that τ_1 is coarser than τ_2 , or τ_2 is finer than τ_1 .

Proposition 4.3. Let { τ_i : $i \in J$ } be a family of So-IFT's on X. Then the IFS $\Lambda \tau_i$ on ${\cal F}^X$ defined by

$$(\Lambda \tau_i)(A) = \Lambda \{ \tau_i(A) : i \in J \},$$

where $\mathbf{A} \in \mathcal{F}^{\mathbf{X}}$, is a So-IFT on X. Furthermore, $\bigwedge \tau_i$ is the coarsest So-IFT on X containing all τ_i 's.

Definition 4.4. Let (X, τ) be a So-IFTS on X. Then the IFF's

defined on X by

([]
$$\tau$$
)(A)=< μ_{τ} (A),1- μ_{τ} (A)> and (() τ)(A)=<1- γ_{τ} (A), γ_{τ} (A)> are also So-IFT's on X.

Proposition 4.5. If (X, τ) is a So-IFTS on X, then we have $[]\tau \leq \tau \leq \langle \rangle \tau \ .$

A So-IFTS (X,τ) is, of course, in the sense of Chang. Now we can obtain the definition of a So-IFTS in the sense of Lowen [11], too:

Definition 4.6. A So-IFTS in the sense of Lowen is a pair (X, τ) where (X, τ) is a So-IFTS and for each IFS in the form

$$c_{\alpha,\beta}^{=\{\langle x,\alpha,\beta\rangle: x\in X\rangle}$$

where $\alpha, \beta \in I$ are arbitrary $(\alpha + \beta \le 1)$, we have $\tau(c_{\alpha, \beta}) = 1$.

Definition 4.7. Let (X,τ) be a So-IFTS on X. Then the IFF τ^* of complemented IFS's on X is defined by $\tau^*(A) = \tau(\overline{A})$. The number $\mu_{\tau}^*(A) = \mu_{\tau}^{-}(\overline{A})$ is called the closedness degree of A, while $\gamma_{\tau}^*(A) = \gamma_{\tau}^{-}(\overline{A})$ is called the nonclosedness degree of A.

Proposition 4.8. The IFF τ^* on X satisfies the following properties:

(C1)
$$\tau^*(Q)=1$$
 and $\tau^*(\frac{1}{2})=1$;

(C2)
$$\tau^*(A_1 \cup A_2) \ge \tau^*(A_1) \wedge \tau^*(A_2)$$
 for any $A_1, A_2 \in \mathcal{F}^X$;

(C3)
$$\tau^*(\cap A_i) \ge \Lambda \tau^*(A_i)$$
 for any $\{A_i : i \in J\} \subseteq \mathcal{F}^X$.

If (X,τ) is a So-IFTS, then for each $\alpha\in(0,1]$ and $\beta\in[0,1)$ with $\alpha+\beta\leq 1$, the family τ defined by

$$\tau_{\alpha,\beta} = \{A \in \mathcal{F}^{X} : \tau(A) \ge c_{\alpha,\beta}\}$$

is an IFTS [6]. $\tau_{\alpha,\beta}$ is called the (α,β) -level IFTS on X, and in this case the family of all intuitionistic fuzzy closed sets in this IFTS can be written as

$$\tau_{\alpha,\beta}^* = \{A \in \mathcal{F}^X : \tau^*(A) \ge c_{\alpha,\beta} \}$$
.

Now one can obtain the closure and interior operators in the IFTS $(X, \tau_{\alpha, \beta})$ for each $\alpha \in (0,1]$, $\beta \in [0,1)$ with $\alpha + \beta \le 1$ as in [6]:

$$c1_{\alpha,\beta}(A) = \bigcap \{K \in \mathcal{F}^X : A \subseteq K, K \in \tau_{\alpha,\beta}^* \}$$
 and $int_{\alpha,\beta}(A) = \bigcup \{G \in \mathcal{F}^X : G \subseteq A, G \in \tau_{\alpha,\beta} \}$

for each $A \in \mathcal{F}^{X}$. Notice that we have $\tau_{\alpha,\beta}^{*}(cl_{\alpha,\beta}(A)) \geq c_{\alpha,\beta}$ and $\tau_{\alpha,\beta}^{(int_{\alpha,\beta}(A)) \geq c_{\alpha,\beta}}$.

Proposition 4.9. The closure and interior operators satisfy the following properties:

(1)
$$\operatorname{cl}_{\alpha,\beta}(A) \supseteq A$$
 (1') $\operatorname{int}_{\alpha,\beta}(A) \subseteq A$

(2)
$$A \subseteq B$$
 and $\langle \alpha, \beta \rangle \leq \langle \gamma, \delta \rangle \implies \operatorname{cl}_{\alpha, \beta}(A) \subseteq \operatorname{cl}_{\gamma, \delta}(B)$

(2')
$$A \subseteq B$$
 and $\langle \alpha, \beta \rangle \leq \langle \gamma, \delta \rangle \implies \inf_{\gamma, \delta} (A) \subseteq \inf_{\alpha, \beta} (B)$

$$(3)$$
 $c1_{\alpha,\beta}(c1_{\alpha,\beta}(A))=c1_{\alpha,\beta}(A)$

(3') int
$$\alpha, \beta$$
 (int α, β (A))=int α, β (A)

(4)
$$\operatorname{cl}_{\alpha,\beta}(A \cup B) = \operatorname{cl}_{\alpha,\beta}(A) \cup \operatorname{cl}_{\alpha,\beta}(B)$$

(4') int
$$\alpha, \beta$$
 (A \cap B)=int α, β (A) \cap int α, β (B)

$$(5)$$
 cl _{α} $(0)=0$

(5') int
$$\alpha \cdot \beta \stackrel{(1)}{\approx} = 1$$

Proposition 4.10. For each $A \in \mathcal{F}^{X}$ and for each $\alpha \in (0,1]$, $\beta \in [0,1)$ with $\alpha + \beta \leq 1$, we have

(1)
$$\overline{\operatorname{cl}}_{\alpha,\beta}(A) = \operatorname{int}_{\alpha,\beta}(\overline{A})$$
 (2) $\overline{\operatorname{int}}_{\alpha,\beta}(A) = \operatorname{cl}_{\alpha,\beta}(\overline{A})$

Fuzzy Continuity

Definition 4.11. Let (X,τ) and (Y,Φ) be two So-IFTS's and $f:X\to Y$ be a function. Then f is said to be fuzzy continuous iff

$$\tau(f^{-1}(B)) \ge \Phi(B)$$

for each $B \in \mathcal{F}^{Y}$ (cf. [13,14])

Proposition 4.12. The following properties are equivalent:

- (a) $f:(X,\tau) \rightarrow (Y,\Phi)$ is fuzzy continuous.
- (b) $\tau^*(f^{-1}(B)) \ge \Phi^*(B)$ for each $B \in \mathcal{F}^{\Upsilon}$.

Definition 4.13. Let (X, τ) and (Y, Φ) be two So-IFTS's and $f: X \to Y$ be a function. Then f is said to be fuzzy open iff

for each $A \in \mathcal{F}^{X}$. (cf. [13.14])

Fuzzy Compactness Spectrum

If ${\mathcal U}$ is a subfamily of ${\boldsymbol{\mathscr I}}^{\mathsf X}$, then we define the following intuitionistic fuzzy pairs:

$$\tau(\mathcal{U}) = \Lambda(\tau(A) : A \in \mathcal{U})$$
 and similarly $\tau^*(\mathcal{U}) = \Lambda(\tau^*(A) : A \in \mathcal{U}).$

Right fuzzy inclusion plays an important role in developing the fuzzy compactness spectrum in So-IFTS's using a construction similar to [13,14,9]:

Definition 4.14. Let (X, τ) be a So-IFTS on X, $A \in \mathcal{F}^X$ and $\langle \alpha, \beta \rangle$ an intuitionistic fuzzy pair such that $\alpha \in (0,1]$, $\beta \in [0,1)$. The fuzzy compactness spectrum of A at a level $\langle \alpha, \beta \rangle$ is defined by

[Here the expression " $\mathcal{U}_0 \subseteq \mathcal{U}$ " means that \mathcal{U}_0 is a finite subcollection of \mathcal{U}_*]

Remark 4.15. Notice that we always have $0^{\sim} \in \mathbb{C}_{\alpha,\beta}(A)$.

Proposition 4.16. (cf. [9]) Let A_1 , $A_2 \in \mathcal{F}^X$. Then

$$^{\mathbb{C}}_{\alpha,\beta}(^{\mathbb{A}_{1}\cup\mathbb{A}_{2})\supseteq\mathbb{C}_{\alpha,\beta}(^{\mathbb{A}_{1}})\cap\mathbb{C}_{\alpha,\beta}(^{\mathbb{A}_{2}})}.$$

Proposition 4.17. (cf. [9]) Let (X, τ) , (Y, Φ) be So-IFTS's and $f: X \to Y$ be a fuzzy continuous function. Then, for any $A \in \mathcal{F}^X$, we have

$$C_{\alpha,\beta}^{(f(A)) \supseteq C_{\alpha,\beta}^{(A)}}$$
.

REFERENCES

- [1] K. Atanassov, Intuitionistic fuzzy sets, *VII ITKR's Session*, Sofia (September, 1983) (in Bulgarian).
- [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- [3] K. Atanassov, Review and new results on intuitionistic fuzzy sets, *Preprint IM-MFAIS-88-1*, Sofia, pp. 1-8.
- [4] C. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- [5] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness: Fuzzy topology, Fuzzy Sets and Systems 49 (1992) 237-242.
- [6] D. Coker, An introduction to intuitionistic fuzzy topological spaces, to appear in Fuzzy Sets and Systems.
- [7] D. Çoker and A. H. Eş, On fuzzy compactness in intuitionistic fuzzy topological spaces, *J. Fuzzy Mathematics* **3-4** (1995) 899-909.
- [8] D. Coker and M. Demirci, On fuzzy inclusion in the intuitionistic sense, to appear in J. Fuzzy Mathematics.
- [9] A. H. Eş and D. Coker, On several types of degrees of fuzzy compactness in fuzzy topological spaces in Sostak's sense, J. Fuzzy Mathematics 3-3 (1995) 481-491.
- [10] R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems 45 (1991) 78-82.

- [11] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976) 621-633.
- [12] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992) 371-375.
- [13] A. Sostak, On a fuzzy topological structure, Supp. Rend. Circ. Mat. Palermo (Ser. II) 11 (1985) 89-103.
- [14] A. Sostak, On compactness and connectedness degrees of fuzzy sets in fuzzy topological spaces, in General Topology and its Relations to Modern Analysis and Algebra (Helderman Verlag, Berlin, 1988) 519-532.
- [15] L. A. Zadeh, Fuzzy sets, *Information and Control*, 8 (1965) 338-353.