A Note on RS-Compact Symmetric Topological Molecular Lattices

A. Haydar Eş and Doğan Çoker

Department of Mathematics - Department of Mathematics Education

Hacettepe University, Beytepe, 06532 - Ankara / TURKEY

Abstract: S-closed symmetric topological molecular lattices were first introduced by Wang [11]. In this paper, we discuss RS-compact symmetric topological molecular lattices.

Keywords: Symmetric topological molecular lattice, regular open (closed) set, S-closed space, RS-compact space, regular semiopen (semiclosed) set, extremally disconnected space.

1. Introduction

The concept of a S-closed space and RS-compact space has been investigated thoroughly in general topology [5, 6, 3], and has been generalized into the theory of topological lattices [1, 2, 7, 8, 9, 10, 11]. The aim of this paper is to continue the discussion of RS-compactness in symmetric topological molecular lattices.

A symmetric topological molecular lattice (briefly, symmetric TML) is a pair (L, η) where L is a fuzzy lattice, i.e., a completely distributive complete lattice with an order reversing involution "'" on it, and η is a co-topology on L, i.e., $\eta \subset L$, 0, $1 \in \eta$ and η is closed under the operations of finite unions and arbitrary intersections. (L, η) can also be written as $(L(M), \eta)$, where M is the set consisting of all molecules e's. Here e e is called a molecule, if $e \neq 0$ and $e \leq A \vee B$ implies $e \leq A$ or $e \leq B$ for every pair A, B of elements of L. Members of η are called closed elements, members of $\delta = \eta' = \{P': P \in \eta\}$ are called open elements.

An L-fuzzy topological space (briefly, L-fts) (L*, δ) is a special symmetric TML, where $\eta=\delta'$, and so the concept of a symmetric TML is a generalization of the concept of an L-fts [11].

Definition 1.1. [11] $\forall A \in L, \overline{A} = \land \{P : A \le P \in \eta\}$

$$\overset{\circ}{A} = V \{U : U \leq A \text{ and } U \in \delta\}$$

are the closure and interior of A, respectively.

Proposition 1.2. [11] $\forall A \in L, A'^{-\prime} = \overset{0}{A}, A'^{0\prime} = \overline{A}$

Definition 1.3. [11] Let (L, η) be a symmetric TML. An element A of L is called

regular open, if $A = \frac{0}{A}$; an element A of L is called regular closed, if A = A.

Proposition 1.4. [11] A is regular open iff A' is regular closed.

Definition 1.5. [11] Let (L, η) be a symmetric TML. An element A of L is semiopen, if there exists an open element V such that $V \le A \le \overline{V}$. A is semiclosed, if there exists a closed element Q such that $Q^0 \le A \le Q$.

Proposition 1.6. [11] Let (L, η) be a symmetric TML and A an element of L, then

- (i) A is semiopen iff A' is semi-closed.
- (ii) If A is open, then A is semi-open, if A is regular open, then A is also semi-closed. **Proposition 1.7.** [11] Let (L, η) be a symmetric TML and A an element of L, then the following conditions are equivalent to each other:
- (i) (L, η) is extremally disconnected.
- (ii) Closures of open elements are open.
- (iii) Regular closed elements are open.
- (iv) Regular open elements are closed.

Let L be a fuzzy lattice, $A \in L$ and $B = \{B_t\}_{t \in T} \subset L$. We say that B is a cover of A if $A \leq \bigvee_{t \in T} B_t$. We say that B is central, if the intersections of elements of finite subfamilies of B are non-zero [11].

Definition 1.8. [11] a) Let (L, η) be a symmetric TML. (L, η) is said to be S-closed, if every regular closed cover of the greatest element 1 has a finite subcover.

b) Let (L, η) be a symmetric TML. (L, η) is said to be H(i) if for every open cover $U=\{U_t\}_{t\in T}$ of 1, there exist $t_1,\ldots,t_n\in T$ such that $\{\overline{U}_{t_1},\ldots,\overline{U}_{t_n}\}$ is a cover of 1.

Theorem 1.9. [11] Let (L, η) be an extremally disconnected symmetric TML, then (L, η) is S-closed iff it is H(i) (or almost compact).

Definition 1.10. [11] Let (L, η) be a symmetric TML η^* the co-topology generated by the closed base μ consisting of all regular closed elements of η , then (L, η^*) is called the semiregularization of (L, η) .

Lemma 1.11. [11] Let (L, η) be a symmetric TML and (L, η^*) its semiregularization, $A \in L$. Then

- (i) A is regular closed in (L, η) iff A is regular closed in (L, η^{\bullet}) .
- (ii) A is regular open in (L, η) iff A is regular open in (L, η^*) .

Theorem 1.12. [11] Let (L, η) be a symmetric TML and (L, η^*) its semiregularization, then (L, η) is S-closed iff (L, η^*) is S-closed.

Definition 1.13. [8] Let L_1 and L_2 be two fuzzy lattices. A mapping f: $L_1 \rightarrow L_2$ is said to be an order-homomorphism, if

- (i) f is union-preserving,
- (ii) f^1 : $L_2 \rightarrow L_1$ is involution preserving.

Definition 1.14. [8] Let (L_1,η_1) and (L_2,η_2) be symmetric TML's and f: $L_1 \rightarrow L_2$ an order-homomorphism. Then f is said to be an S-order-homomorphism, if for every regular closed element Q of (L_2,η_2) , $f^1(Q)$ is a union of regular closed elements of (L_1,η_1) .

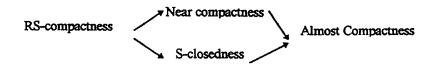
2. RS-Compact Symmetric Topological Molecular Lattices

Definition 2.1. Let (L, η) be a symmetric TML. An element A of L is regular semiopen, if there exists a regular open element U such that $U \le A \le \overline{U}$. A is regular semiclosed, if there exists a regular closed element B such that $B \le A \le B$.

Definition 2.2 a) Let (L, η) be a symmetric TML. (L, η) is said to be RS-compact, if every regular semi-open cover of the greatest element 1 has a finite subcover.

b) Let (L, η) be a symmetric TML. (L, η) is said to be nearly compact if every open cover U = {U_i}_{i∈I} of 1, there exist i₁, ..., i_n ∈I such that { ⁰/_{U_{i1}},..., ⁰/_{U_{in}} } is a cover of 1, or equivalent, every regular open cover of the greatest element 1 has a finite subcover.

It is clear that in TML's we have the following implications:



Theorem 2.3. Let (L, η) be an extremally disconnected symmetric TML. Then the following conditions are equivalent:

- (i) (L, η) is RS-compact.
- (ii) (L, η) is almost compact (or H(i)).
- (iii) (L, η) is nearly compact.
- (iv) (L, η) is S-closed.

Proof. Suppose that (L, η) is H(i) and $U=\{U_i\}_{i\in I}$ is a regular semi-open cover of 1.

Then there exists a regular open G_i such that $G_i \leq U_i \leq \overline{G}_i$, for each $i \in I$. Hence there exist $i_1,...,i_n \in I$ such that $\{\overline{G}_{i_1},...,\overline{G}_{i_n}\}$ covers 1. Since

$$\frac{{}^0}{\overline{U}_i} = \stackrel{0}{\overline{G}}_i = G_i = \overline{G}_i \leq U_i, \{U_{i_1}, ..., U_{i_n}\} \text{ covers 1, hence (L,η) is RS-compact.}$$

Theorem 2.4. Let (L,η) be a symmetric TML, then (L,η) is nearly compact iff every central family of regular closed elements has a non-zero intersection.

Proof. \Rightarrow : Let $B = \{B_i\}_{i \in I}$ be a central family of regular closed elements and $\bigwedge_{i \in I} B_i = 0$.

Then $\bigvee_{i\in I} B_i'=1$. It follows that there exist $i_1,...,i_n\in I$ such that

$$B'_{i_1} \vee ... \vee B'_{i_n} = 1.$$

Hence $\bigwedge_{m=1}^{n} B_{i_m} = 0$, which is a contradiction.

Theorem 2.5. (L,η) be a symmetric TML, then (L,η) is RS-compact iff for every regular semi-closed (or, regular semi-open) family $U=\{U_i\}_{i\in I}$ such that $\bigwedge_{i\in I}U_i=0$, there exist finitely many $i_1,...,i_n\in I$ with $\bigwedge_{m=1}^n U_{i_m}=0$.

Proof. \Rightarrow : Let $U=\{U_i\}_{i\in I}$ be a regular semi-closed family and $\bigwedge_{i\in I}U_i=0$. Then $\{U_i'\}_{i\in I}$ is an regular semi-open cover of 1. From the hypothesis, there exist $i_1,...,i_n\in I$ such that $U_{i_1}' \vee ... \vee U_{i_n}' = 1$.

Now $\bigwedge_{m=1}^{n} U_{i_m} = 0$ follows.

←: Similar to the above, and is omitted.

Theorem 2.6. Let (L,η) be a symmetric TML and (L,η^*) its semiregularization, then (L,η) is almost compact iff (L,η^*) is almost compact.

Proof. Similar to the proof Theorem 1.12 in [11].

Corollary 2.7. Let (L,η) be a symmetric TML and (L,η^*) its semiregularization, then (L,η) is RS-compact iff (L,η^*) is RS-compact.

In a symmetric TML, RS-compactness is not a "good extension" in the sense of Lowen [4]:

Example 2.8. Suppose that (L,η) is a fuzzy topological space (X, W(U)) which is the induced fuzzy space by W from the classical space (X, U). Then it is easy to see that (X, U) is RS-compact whenever (X, w(U)) is RS-compact. But the converse is not true. Let $X \neq \phi$ and $U = \{\phi, X\}$. Then (X, U) is RS-compact. On the other hand, w(U) is the family of all constant functions defined on taking values in [0,1] [11]. Since $\varphi = \{1 - \frac{1}{n} : n = 1,2,...\}$ is a regular semi-open cover of 1 and it has no finite subcover of 1, (X, W(U)) is not RS-compact.

Definition 2.9. Let (L,η_1) and (L_2,η_2) be symmetric TML's and f: $L_1 \rightarrow L_2$ an order homomorphism. Then f is said to be an RS-order-homomorphism, if for every regular semi-open element B of (L_2,η_2) , $f^1(B)$ is a union of regular semi-open elements of (L_2,η_1) .

Theorem 2.10. Let (L_1,η_1) be a symmetric TML and f: $(L_1,\eta_1) \rightarrow (L_2,\eta_2)$ be an RS-order-homomorphism which is surjective and (L_1,η_1) is RS-compact, then (L_2,η_2) is RS-compact.

Proof. Suppose $\{F_{\alpha}\}_{\alpha\in I}$ is a regular semi-open cover of 1_{L_2} then $\{f^1(F_{\alpha})\}_{\alpha\in I}$ is cover of 1_{L_1} . Since f is an RS-order-homomorphism, $f^1(F_{\alpha})$ is a union of regular semi-open elements of (L_1,η_1) . Now the family $\bigcup_{\alpha\in I} B_{\alpha}$ is a regular semi-open cover of 1_{L_1} . Hence

there exist finitely many P_1, \ldots, P_n such that $\bigcup_{i=1}^n P_i = 1_{L_1}$ For each $1 \le i \le n$, there exists an $\alpha_i \in I$ such that $P_i \le f^1(F_{\alpha_i})$. Then $f^1(\bigvee_{i=1}^n F_{\alpha_i}) = \bigvee_{i=1}^n f^{-i}F_{\alpha_i} \ge \bigvee_{i=1}^n P_i = 1_{L_1}$ and $\bigvee_{i=1}^n F_{\alpha_i} = 1_{L_2}$. Therefore (L_2, η_2) is RS-compact.

References

- [1] S.L.Chen, NS-closedness in L-fuzzy topological spaces, Proc. IFES'91, Japan, 1991, Vol.1,27-32
- [2] S.L.Chen, Several order-homomorphisms on L-fuzzy topological spaces, J.Shaanxi Normal University 16(1988) 15-19.
- [3] W.C.Hong, On RS-compact spaces, J.Korean Math. Soc, 17(1980) 39-43.
- [4] R.Lowen, A comparision of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl. 64(1978) 446-454.
- [5] T.Noiri, On RS-compact spaces, J. Korean. Math. Soc. 22(1985) 19-34.
- [6] T.Noiri, On S-closed spaces, Atti Accad. Naz. Lince, Rend. Cl Sci. Fis Mat. Natur. (8) 64 (1978) 157-162.
- [7] Guo-Jun Wang, Topological molecular lattices I, Science Bulletin, 29(1984) 19-23.
- [8] Guo-Jun Wang, Order-homomorphisms on fuzzies, Fuzzy Sets and Systems, 12(1984) 281-288.
- [9] Guo-Jun Wang, Pointwise topology on completely distributive lattices, Fuzzy Sets and Systems, 12(1984) 281-288.
- [10] Guo-Jun Wang, Theory of topological molecular lattices, Fuzzy Sets and Systems, 47(1992) 351-376.
- [11] Guo-Jun Wang, S-closed symmetric topological molecular lattices, The Journal of Fuzzy Math. 2(1994) 449- 461.