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Compact Spaces and Ultra - fuzzy Paracompactness
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Abstract In this paper, a conception of relative R-neighborhood family in L-fuzzy topological
spaces is introduced, by which some characterizitions of ultra-fuzzy compactness are given; using the
conception, we' ve proved Alexander Subbase Lemma of ultra- fuzzy compactness. Furthermore the
ultre- fuzzy paracompactness defined by strong locally finite relative remote neighborhood family is
proved to be an L-good extension.
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1.Introduction

The ultra-fuzzy compactness of fuzzy topological spaces was firstly introduced by Lowen in 1978
[1]. Since it was defined by the compactness of the introduced crisp topology based on the support sets
of the fuzzy topological spaces,on the one hand, it seems to be very formulization; on the other hand,
to study its characterizations about fuzzy topology characteristic is very difficult. So the further study on
the ultra -fuzzy compactness is very less up to now. In this paper, the conception of relative remote
neighborhood family in L- fuzzy topological spaces is introduced, by which, the ultra-fuzzy compact
spaces is descripted by remote neighborhood and some characterizations of ultra- fuzzy compact spaces
and some results about product are obtained. Furthermore, an ultra- fuzzy paracompactness based on
the ultra-fuzzy compactness is discussed by means of the relative remote neighborhood family. It is
proved that the ultra- fuzzy paracompactness is equivelant to the paracompactness of its crisp sﬁace in
any weakly induced space. -

Throughout this paper, X always denotes a nonempty crisp set, L denotes a fuzzy lattice,0 and 1
denote the least element and the largest element of L or L* respectively. M(L) and M* (LX) denote
the sets consisting of all nonzero union irreducible elements of L and L* respectively. (L*, &) always
denotes an L-fuzzy topological space(briefly, L-fis) . the rest notions and symbols in the paper are from
[2].
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2.The characterizations of ultra-fuzzy compact spaces

Let (I*,8) be an L-fis.To take I'(8) = {1,(A):A€ L, is a prime element of L and r51}
as a subbase produce a crisp topology on X [ 2] , which is called induced crisp topology by & on X
and denoted as 1;(8),where [,(A) = {xEX:A(x)<r}. ¥ (X,1,(8)) is a compact space, then
we call (I*,8) an ultra-fuzzy coinpact space [1,2]( UFCS for short).

Definition 2.1 Let (L*,8) be an L-fis, PE &' ,r€E M(L) and € X. I PE 5(x,), then
the pair (P, r) is called a relative remote neighborhood(RR, for short) of x.The set {(P(i),r(i)):
i€I1lcd x M( L) is called a relative remote neighborhood family( RRF for short) of X, if for any
xE€ X, there exists i € I such that (P(i),r(i)) isa RR of x.

We can describe the ultra-fuzzy compactness of an L-fts with the RRF.

Proposition 2.1 (L*,8) is an UFCS iff for any RRF & of X, there is a finite subfamily of @
that is a RRF of X.

Notice that @ = {(P(i),r(i)):i€ 1} is a RRF of X iff {1y (P(i)'):i€ 1} is an open
covering of (X, l;(J)) consisted in I' (&) . From Alexander Subbase Lemma in crisp topological
spaces, Proposition 2.1 can be proved.

Now we give some characterizations of UFCS successively.

Definition 2.2[5] Two fuzzy nets S = {s(n):nE€E D} and. T={t(n):n€ D} in (I%,8)
are called similar,if s(n) and t(n) possess the same support point for each n € D.x, €M™ (LX)
is called a transitive a-cluster point of net S,if x, is a cluster point of S and for each ¢ & M(L) the
constant c-net that similar to S -clusters to x, .

Lemma 2.1{4,5] Suppose that a € L and B is the minimal set of a. Then a € M(L) iff B is
direct . .

Theorem 2.1 (L*,8) is an UFCS iff any a - net in L* possesses a transitive a-cluster point for
each a € M(L).

Proof Let (L*,8) be an UFCS and S = {x}(»): n € D} be a a-net in LX, where D is a
directed set and 2" = supp 2J,,) for each n € D .Taking ¥ = {x € X ;1" is a cluster point of S } CX,
then '

For each x€ X \ Y, there exists P(x) € 7 (x,(;)) and n(x) € D such that

%3y < P(x) whenever n = n(x) (2.1)

In which ()€ 8" () such that P(x) € 7(x,(s)) whenever P(x) € 7(x,). Now asuume

that for each x€ Y, x, isn’t a transitive cluster point of S . Then there exists ¢c(x) € M(L) such
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that x(,) isn’t a cluster point of the constant c¢(x)-net S,(,) = {x%,):n€ D} that is similar to S.1i.
e. :
There is ¢(x) € M(L), Q(x) € 5 (x.(,)) and n(x)€ D such that 2%,)< Q(x)
whenener n>n(x) (2.2)
Taking @ = {(P(x),r(x)):2€ X\ Y}U{(Q(x),c(2)):xE Y}, then ® is a RRF of X.
Let @y is a finite subfamily of ® which is a RRF of X.In this time, g = {(P(x;),r(x;)) :i=1,
=, ktU{(Q(%;),c(x)):j=k+1,+,k+ m}.By Lemma 2.1, we can take r* € 8* (a) such
that r* =r(x;)(i=1,,k),then $o* = {(P(x),r"):i=1,,kLU{(Q(x),c(x)) :j=
k+1,,k+m} is also a RRF of X.Notice that S is a a-net, therefore for r* € 8* (a) , we obtain
the following result:
There exists n(r* )€ D,when n=n(r"),r* <V(2}(,) =4(n),i.e.
Be < (n) (2.3)
Taking NE D such that N=n(r*),N=n(x,)(t=1,"*,k + m),then for each n= N, from
(2.1) ~(2.3), 27« <25y < P(x;)(i=1,",k) and xﬁ(ﬁ)sQ(xj)(j=k+1,'", k+m).
Thus when n> N, there is no RR of " € X. This contradicts that ®,* is a RRF of X. Hence S
possesses a transitive a-cluster point. '
Inversely, suppose that every a-net in L¥ possesses a transitive a-cluter point for each « € M(L)

and @ = {(P(i),r(i)):i€ I} is a RRF of x. Assume that all finite subfamily of ® aren’t RRF of
X.i.e.

For each WE2(®) there is x¥ € X such that x%;y< P(i) for any

(P(i),r(i)ew (2.4)
where 2(%) = { W' C®. ¥ is finite} . Taking S = {x¥ ; W€ 2®)}, in which the directed set is 2(?’ , the
pair order relation is the containing relation of sets. Then S is a constant a-net in L*. By the
condition, S possesses a transitive a-cluster point y, . Then there exists ig€ I such that P(iy) € 7
(y,(io)) from that @ is a RRF of X.On the other hand, for each ‘F€2(¢),when T ={(P(i),r
(i)} €2®)  there exists ¥ € X such that ngio)sP(io) by (2.4) since (P(ip),r(ip))E .
But from that y, is a transitive cluster point of S, Yr(iy) should be a cluster point of constant r(ig)-net
Sr(iy) = {x;If,-o);‘IfE 2(®)} that is similar to S . This contradicts that P(ig) € ﬂ(y,(io)) and x:I(',-o)

< P(iy) when ¥={(P(ip) ,r(io))'} . So there is a finite subfamily of @ to be a RRF of X .Hence
(I*,8) is an UFCS by Proposition 2.1.

Definition 2.3 [4] Let F be a nonempty subsets family in L*.If (1) 0 ¢ F;(2) F,,F,€ F
implies F; A F, € F,then F is called a filter base in L*. I F also satisfies that (3)E> FE F
implies E€ F,then F is called a filter in I*X. Let « € M(L),call filter F in LX a a-filter, if V ,cx
F(x)=a for each FE F; call x, a a-cluster point of F if F & P for each FE F and each PEq
(). .

Let F={F;:i€ I} be a filter in L*. Expressing F as F = U;e;| F;: i € I(j)}, in which
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Ujed(j) =1 and supp F;= A(j)CX(jE J) for each i€ I(j).Then A, = {cya(jy:jE J} is a
filter base in L* for any ¢ € M(L).The filter induced by A, is denoted as F..

Definition 2.4 Let F be a filter L*,x€ X and a € M(L).Call x, a transitive a-cluster point
of F,if x, is a a-cluster point of F and F, cluster to x, for any ¢cE M(L).

From the relation between net and filter, it is easy to obtain the characterization of ultra-fuzzy
compactness by filters as following.

Theorem 2.2 (L*,8) is an UFCS iff any a - filter in L* possesses a transitive a-cluster point for
each a € M(L).

Let (I*,8) be an L-fis, then to take U {[A]:A € L} as a subbase may product an L-fuzzy
topology on X [6] denoted by 8, and call 3, the fully stratification of 5, where [A] denotes the LF set
with constant value A on X .

Theorem 2.3 (L*,8) is an UFCS iff (I*,8.) is an UFCS.

Proof It needs to prove the necessity only. Suppose that (L*,8) is an UFCS and ® is a RRF
in (L*,8.),i.e.for any y€ X, there exists (P(y),r(y)) € & such that r(y) ¢ P(y)(y),where
P(y)€ &, and r(y)€ M(L).Since 8, is the fully stratification of &,3, is an L-fuzzy topology on X
producted by taking {PV [A]: P€ 8’ and A€ L} as a closed base. Therefore P(y) = Niery (P
(¢)VIA,]) in which P($)€ " and A,€ L for any t € T(y).By r(y) £ P(y)(y) = Aierey
(P(e)V[ A, (y),there is t(y) € T(y) such that r(y) ¢« (P(t(y))V [A,(,)])(y).Whence
r(y)¢ P(t(y))(y) and r(y)([A,(y)](y).Furﬂlermore we have that

r(y) ¢ P(t(y))(y) and (y) ¢ [&(y)](x) for each x € X (2.5)

Let ¥={(P(t(y)),r(y)):yE X}, then ¥ is a RRF in (L*,8) . By the condition, there
exists ¥ = {(P(t(yj),r(yj)):j=1,"',nf€2(q’) tobe a RRF in (I*,8).i. e. for each x €
X ,there is j<< n such that r(y;) « P(2(y;))(x).From (2.5),r(y) ¢ [/\,(yj)](x).Noﬁce that r
()’_,')EM(L)oSO T(J’j){P(t(yj))V['\;(yj)])(x),thus r()’,) « /\,er(y)(P(t)V [/\,])(x) =
P(y;)(x).Let @o={(P(y),r(y)):j=1,,n},then D€ 2® is a RRF in (I*,85.).S%
(IX,3,) is an UFCS .

3.The product of UFCS

Theorem 3.1 (Alexander Subbase Lemma) Suppose that (L*,8) is an L-fts, Y is the subbase
of 8 and A = {(P(s),r(S)):s€ S} is an arbitrary RRF of X , in which P(s) € ¥’ for each s€ S.
If there is a finite subfamily Ag of A to be a RRF of X, then (I*,8) is an UFCS.

Proof Let ® be atbitrary RRF of X (it needn’t that ® ¥’ x M(L)). Assume that for each
E2® W isn't a RRF of X.Taking H={0:0c0C ,for each TE€2D, Y isn't a RRF of
X} ,then ®E H.i.e. H @. It is obvious that every full order subset in H has an upper bound
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according to the containing relation of sets. By Zorn Lemma, there is a maximal element Qy in H.It can
be obtained that the following results.

(1) Qyis a RRF of X.

(2) ¥ (P,r)€Qpand P< Q then (Q,r) € 0.

3) E(PVQ,r)EQy,then (P,r)EQgor (Q,r)E .

where P, Q€ &' ,r€ M(L).From (2) and (3),we have that

K(P,r)€Qy,P;&d(i=1,",n) and P< V., P;,then there exists i < n such that

(P;,r) € 0 (3.1)

Now let 29={(P(t),r(¢)):tE T} and take a subfamily A = {(P(5),r(s)):s€ S} c Qy,
where for each t€ T,if P(¢)€ 7' then (P(t),r(¢)) € A.From the condition of the lemma and o
€ H,we see that A is surely not a RRF of X.Thus

there exists € X, such that x,(s) < P(s) for each sES ‘ (3.2)

Now assume that for x stated above, there is t € T such that (P(t),r(z)) is a RR of x,i.e.
%1y« P(t) . Then there is { P;: i€ I,j€ J(i)} C 7' such that P(t) = A;e;V jey)Py(for each i
€1,J(i) is finite) since P(t) € &' and 7 is the subbase of 8. Hence there exists i € I such that
%0y £ V jejy Pjand P(t) < V je j¢iy Py.From (3.1),there is j€ J(i) such that (Py,r(t))€
. Thus (P,-j, r(¢))€ A.But in this time, x,(;) « Py . This contradicts the formula (3.2).S0 all
elements in {)y aren’t RR of x. But this also contradicts ( 1) . The contradiction makes clear that
there is a finite subfamily of ® to be a RRF of X.So (L*, &) is an UFCS by Proposition 2.1.

Let {(L*,8,):i€ I} be a family of L-fts and (IX, &) be the product space. It is easy to prove
1,(8) =:edL(8;),in which TI;cl.(8;) denotes the product topology of {1,(8;):i € I}.So we
have the following result.

Theorem 3.2 Let {(L*,8;):i€ I} be a family of L-fis, and (L*, &) be the product space
[2]. If (L*,8;) is an UFCS for each i€ I, then (L*,8) is an UFCS.

By the way, the proof of Theorem 2.2 is also obtained by Alexander Subbase Lemma and
Proposition 2.1.

Theorem 3.3 Let (L*,8) and (LY, p) be both L-fis and f: (I*,8) — (LY, p) be a
continuous fully L-value Zadeh type function. If (L*,8) is an UFCS, then so is (LY, ).
Proof 1t is easy to prove by Proposition 2.1.

Theorem 3.4  ( Taxonop Product Theorem) Let {(L¥,8;):i € I} be a family of L-fis, and
(L*X,8) be the product space. Then (L*,8) is an UFCS iff (L*,8;) is an UFCS for each i € I.

Proof It is trivial by Theorem 3.2, Theorem 3. 3, and the result that projection mapping p;:
(L*,8)—(I%,8;)(i€1I) is a continuous full L-value Zadeh type function.

4.Strong locally finite RRF and the ultra-fuzzy paracompactness

In this section, an L-fuzzy ultra-fuzzy paracompactness based on the ultra -fuzzy compactness is
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introduced . The result make clear that the ultra- fuzzy paracompactness is an L-good extension.

Definition 4.1 [2,7] Let (I*,8) be an L-fts and A = {A,:t € T} c L*. If for each e €

M* (L*) , there exist a crisp closed remote neighborhood P of e and a finite subfamily T, of 7' such
that A, < P for each t& T \ Ty, then call A a strong locally finite in X .

Definition 4.2 Let (I*,8) be an L-fis, & = {(P(i),r(i)):i€ I} and ¥ = {(Q(j),s
(j)):j€ J} be two RRF of X.Call ¥ a corefinement of @, if for each (Q(j),s(j)) € ¥ there
exists (P(i),r(i))€ @ such that Q;= P; and s(j) = r(i).Call ¥ a strong lMy finite RRF of
X,if {Q(5) :5E€ J} is strong locally finite in X.

Definition 4.3 Let (I%,8) be an L-fis. If for each RRF ® of X, there exists a RRF ¥ such
that ¥ is a corefinement of ® and a strong locally finite RRF of X, then (L*,8) is called a Il -type
[2] ultra- fuzzy paracompact space ( UFPCS for short) .

If {P(i):i€ 1} is an arbitrary a-RF(a € M(L)) in (I*X,8),then {(P(i),a):i €I} is a
RRF of X.So it can be obtained by the definition of Il - type paracompact in [2] that

Corollary 4.1 If (L*,8) is an UFPCS, then (L*, &) is Il -type paracompact.

Theorem 4.1  Being weakly induced space , (L*, &) is 1 - type paracompact iff its support
space (X,[81)(2,6] is crisp paracompact .

Corollary 4.2 In every weakly induced space (L*,8), if (I*, & ) is an UFPCS, then (X,
[8]) is crisp paracompact .

Theorem 4.2 Let (IX,4) beaweaklyinducedspace.[f(X,[S]) is crisp paracompact , then
(L*,8) is an UFPCS.

Proof Let @ = {(P(i),r(i)):i€ I} be every RRF in (IX,5). For each i€ I, taking U
(i)={2€X:P(i)(x)» r(i)}.Then U(i)E1,(8) =[8] by (I*,8) is weakly induced .So U
={U(i):i€ I} is an open covering of (X,[&]).From the condition, we can suppose that V= {V
(j):j€ J}t is an open refinement covering of U and locally finite in X . For each j€ J, taking i = i
(j)E I such that V(;) c U(i(j) ). Let B(j) = P(i(j))V yv(y - Then B(j) € &' and B(j) =P
(i(j)) from xy(;) €. Let = {(B(j),r(i(j))):j€ J}.Next we shall prove that ¥ is a RRF
of X which is a corefinement of ® and strong locally finite in X.

Let x€ X and take j€ J such that x€ V(j).Then € U(i(j)).Hence P(i(j))» r(i(j))
and B(j) = P(i(j)) V xvijy # x-(i(j)) - Therefore ¥ is a RRF of X. It is obvious that W is a
corefinement of ®. Let again x, € M* (L*), then by V is locally finite in X, there is an open
neighborhood W of x such that W and one of { V(j1),***, V(ji)} C V intersect.Let Q = yy , then Q
is a crisp closed remote neighborhood of x, . Now let j&€ J \ {j;,**, i}, then V(j) and W don’t
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intersect,i. e. V(])CW’SOfOl‘ each;E]\ {jl,"',jk},B'j=P(i(j))' Axy(j)sx;/(j)sxwv =
Q. This proved that ¥ is strong locally finite in X.So (L*,8) is an UFPCS.

Theorem 4.3 Let (L*,8) be weakly induced , then (L*,8) is an UFPCS iff (X,[8]) is
crisp paracompact .
Proof It is obvious from Corollary 4.2 and Theorem 4.2.

Theorem 4.4  The ultra-fuzzy paracompactness is an L-good extension .
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