Some Properties of Fuzzy Set-valued Martingales Li Shikai, Tang Guanghua and Zhang Hui

Department of Mathematics, Airforce Institute of Meteorology

Nanjing Jiangsu China 211101

Abstract:

In this paper, we discuss some properties of fuzzy set-valued martingales, and give a series of Doob stopping theorems of fuzzy set-valued martingales, fuzzy set-valued submartingales and fuzzy set-valued supermartingales

Keywords: fuzzy set-valued stochastic process, fuzzy set-valued martingale(submartingale,supermartingale),Doob stopping Theorem.

1. Introduction

It is well known that set-valued functions and set-valued random variables have been used repeatedly in economics [4],[9],[10]. The conditional expections of set-valued random variable and set-valued martingales have been studied by Hiai.F, Papageorgion.N.S, Zhang Wenxiu, Nie Zhan-kan and Gao Yong e.t. The discussions of fuzzy set-valued martingales have been oringnated ([1],[6]). This paper's purpose is to discuss further fuzzy set-valued martingales and fuzzy set-valued stohastic processes, and to get some more deep results.

In section 2, elemental notions of fuzzy set-valued stochastic process and fuzzy set-valued martingales are given.

In section 3, we discuss Doob stopping theorems of set-valued submartingales, set-valued martingales and set-valued supermarting -ales.

In section 4, we will give Doob stopping theorems of fuzzy set-valued submartingales, fuzzy set-valued martingales, and fuzzy set-valued supermartingales.

2. Notions of Fuzzy Set-valued Stochastic Processes and Fuzzy Set-valued Martingales

Let X be a n-dimension Euclidean space in this paper, (Ω, \mathcal{F}, P) be a complete probability measure space, $(\mathcal{F}_t)_{t \in R+}$ be a family of monotone increasing sub- σ -fields of \mathcal{F} , and $\mathcal{F}_{\infty}=\bigvee \mathcal{F}_t$ in this paper, where $t \in R+$ is the set of all nonnegative real numbers.

Let $\widetilde{F}_0(X)$ be the family of all fuzzy sets $\widetilde{A}: X \rightarrow [0, 1]$ with properties:

- (1) \widetilde{A} is upper semicontinuous,
- (2) \widetilde{A} is fuzzy convex,
- (3) \widetilde{A}_{α} is compact for every $\alpha \in (0,1]$.

where $\widetilde{A}_{\alpha} = (x \in X : A(x) > \alpha)$ is the α -level set of \widetilde{A} .

If \widetilde{A} , $\widetilde{B} \in \widetilde{\mathcal{F}}_0(X)$, diffine the distance between \widetilde{A} and \widetilde{B} by

$$d(\widetilde{A}, \widetilde{B}) = \sup_{\alpha > 0} h(\widetilde{A}_{\alpha}, \widetilde{B}_{\alpha})$$

where h denotes the Hausdorff distance.

2.1 Theorem

 $(\widetilde{\mathbf{z}}_{0}(X),d)$ is a complete metric space.

Proof: See theorem 4.1 and 4.2 in [8].

A linear structure is defined in $\widetilde{\mathcal{F}}_0(X)$ by

$$(\widetilde{A} + \widetilde{B})(x) = \sup (\alpha \in [0,1] : x \in (\widetilde{A}_{\alpha} + \widetilde{B}_{\alpha}))$$

$$(\lambda \widetilde{A})(x) = \widetilde{A}(\lambda^{-1}x), \text{ if } \lambda \neq 0$$

$$(\lambda \widetilde{A})(x) = 0, \text{ if } \lambda = 0, x \neq 0$$

$$(\lambda \widetilde{A})(x) = \sup_{\mathbf{Y} \in X} \widetilde{A}(\mathbf{y}) \text{ if } \lambda = 0, x = 0.$$

for \widetilde{A} , $\widetilde{B} \in \widetilde{\mathcal{F}}_0(X)$, $\lambda \in \mathbb{R}$. It is easy to prove that $(\widetilde{A} + \widetilde{B})_{\alpha} = \widetilde{A}_{\alpha} + \widetilde{B}_{\alpha}$, and $(\lambda \widetilde{A})_{\alpha} = \lambda \widetilde{A}_{\alpha}$ for every $\alpha \in [0,1]$.

2.2 Definition

Let $\widetilde{F}:(\Omega, \mathcal{P}) \to \widetilde{\mathcal{P}}_0$ be a mapping from (Ω, \mathcal{P}) to $\widetilde{\mathcal{P}}_0(X)$.

1. \widetilde{F} is called a fuzzy set-valued random variable if $(\omega : \widetilde{F}^{-1}(C)(\omega) \in B) = (\omega : \sup_{x \in C} \widetilde{F}(\omega)(x) \in B) \in \mathcal{F}$

for any closed subset C of X and Borel's subset B of [0,1], i.e. $B \in \mathcal{B}([0,1])$.

- 2. \widetilde{F} is called **7**-level measurable if \widetilde{F}_{α} defined by $(\widetilde{F})_{\alpha}(\omega)$
- = $(\widetilde{F}(\omega))_{\alpha}$ for every $\omega \in \Omega$ is a random set for every $\alpha \in (0,1]$. The following two properties are equavalent:
 - 1. \widetilde{F} is a fuzzy set-valued random variable.
 - 2. \widetilde{F} is **7**-level measurable.

Proof: See theorem 1.5.1 in [1].

2.3 Definition

Let T be a subset of R. If for each $t \in T$, there is a fuzzy set-valued random variable $\widetilde{F_t}$, then $(\widetilde{F}_t)_{t \in T}$ is called a fuzzy set-valued stochastic process

2.4 Defintion

Let $\widetilde{F}:(\Omega, \mathcal{F}, P) \to \widetilde{\mathcal{F}}_0(X)$ be a fuzzy set-valued random variable, \widetilde{F}

is called to be integrable bounded, if there exists a nonnegative integrable function σ_{α} for every $\alpha \in (0,1]$ such that $\|x\| < \sigma_{\alpha}(\omega)$ for every $x \in \widetilde{F}_{\alpha}(\omega), \omega \in \Omega$.

Define:

$$(\int_{\Omega} \widetilde{F} dP)(x) = \bigvee_{\alpha \in [0,1]} (\alpha \wedge I \int_{\Omega} \widetilde{F}_{\alpha} dP^{(x)})$$

where $\int_{\Omega} \widetilde{F_0} dP = X$.

2.5 Theorem

Let $\widetilde{F}:(\Omega, \mathcal{A}, P) \to \widetilde{\mathcal{F}}_0(X)$ be an integrable bounded fuzzy set-valued random variable, then $(\int_{\Omega} \widetilde{F} dP)_{\alpha} = \int_{\Omega} \widetilde{F}_{\alpha} dP$ and $\int_{\Omega} \widetilde{F} dP \neq \Phi$ **Proof:** See theorem 6.5.3 in [1].

2.6 Theorem

Let $\widetilde{F}:(\Omega,\mathcal{F},P)\to\widetilde{\mathcal{F}}_0(X)$ be an integrable bounded fuzzy set-valued random variable, then for every sub-field \mathcal{F}_1 of \mathcal{F}_1 , there exists an unique \mathcal{F}_1 -measurable fuzzy set-valued variable \widetilde{G} such that

 $\int_{A} \widetilde{G} dP = \int_{A} \widetilde{F} dP$ for every $A \in \mathcal{I}_1$.

Proof: See theorem 6.5.4 in [1].

2.7 Definition

Let (Ω, \mathcal{F}, P) be a probability space, \mathcal{F}_1 be a sub- σ -field of $\mathcal{F}, \widetilde{F}$: $(\Omega, \mathcal{F}, P) \to \widetilde{\mathcal{F}}_0(X)$ be an integrable bouned fuzzy set-valued variable. $\widetilde{G}: (\Omega, \mathcal{F}, P) \to \widetilde{\mathcal{F}}_0(X)$ is called a conditional expectation of \widetilde{F} with respect to the sub- σ -field \mathcal{F}_1 of \mathcal{F}_1 , and is denoted by $\mathcal{F}_1 \widetilde{F}_1 / \mathcal{F}_1$, if \widetilde{G} is a \mathcal{F}_1 -measurable, integrable bounded fuzzy set-valued random variable satisfying the following condition:

 $\int_{A} \widetilde{G} dP = \int_{A} \widetilde{F} dP$ for every $A \in \mathcal{F}_{1}$.

Conditional expectation of \widetilde{F} is a.e. unique and $(\mathcal{E}[\widetilde{F}/\mathcal{I}_1](\omega))_{\alpha}$ = $\mathcal{E}[\widetilde{F}_{\alpha}/\mathcal{I}_1](\omega)$ a.e. by Theorem 2.5 and 2.6.

2.8 Definition

Let (Ω, \mathcal{F}, P) be a probability space, (\mathcal{F}_t) $_{t \in R+}$ be a family of monotone increasing sub- σ -fields of \mathcal{F} . A fuzzy set-valued stochastic process (\widetilde{F}_t) $_{t \in R+}$ is said to be (\mathcal{F}_t) $_{t \in R+}$ - adapted, if \widetilde{F}_t is a $\{\mathcal{F}_t\}$ $_{t \in R+}$ - measurable fuzzy set-valued random variable. A (\mathcal{F}_t) - adapted integrable bounded fuzzy set-valued stochastic process (\widetilde{F}_t) $_{t \in R+}$ is called a fuzzy set-valued martingale (resp. super-martingale, submartingale), if (\widetilde{F}_t) $_{t \in R+}$ is called a fuzzy set-valued martingale (resp. (\widetilde{F}_t)) a.e. for any $t, t \in \mathbb{R}$, and $t \in \mathbb{F}_t$

3. The Doob Stopping Theorems of Set-valued Martingales

3.1 Definition

A trajectory $F_{\cdot}(\omega)$ of a set-valued stochastic process (F_t) $t \in R_+$ is said to be right continuous at t_0 with respect to h if $\lim_{t \to t_0} h((F_t(\omega)), F_t(\omega)) = 0$. A trajectory $F_{\cdot}(\omega)$ of a set-valued stochastic process (F_t) $t \in R_+$ is said to be right continuous with respect to h if $\lim_{t \to s} h((F_t(\omega)), F_s(\omega)) = 0$ for every $s \in R_+$.

3.2 Theorem

 $(F_t)_t \in \vec{R}_+ \subset \mathcal{L}_c^{-1}[\Omega, X]$ is a $(\mathcal{F}_t)_t \in \vec{R}_+$ - adapted set-valued super maringale (resp. set-valued martingale, set-valued submartingale)

if and only if $(\sigma(x^*, F_t))$ $t \in R_+$ is a (\mathcal{F}_t) $t \in R_+$ -adapted supermartingale (resp. martingale, submartingale) for every $x^* \in X^*$. Where $\sigma(x^*, F_t(\omega))$ is a support function of $F_t(\omega)$, X^* is the dual space of X.

Proof:See theorem 4.1.5 and 4.1.6 in [3].

3.3 Theorem

Let $(\mathcal{I}_t)_t \in \overline{\mathbb{R}}_+$ be right continuous, $(F_t)_t \in \overline{\mathbb{R}}_+ \subset \mathcal{L}_c^{-1}[\Omega]$, X_t be a $(\mathcal{I}_t)_t$ -adapted set-valued supermartingale, its almost all trajectories be right continuous with respect to h, and S,T be two stopping times. Then $\mathcal{E}[F_T/\mathcal{I}_S] \subset F_S$ a.c.

Proof: Since $(\sigma(x^*, F_t))$ $t \in R_+$ is a (\mathcal{F}_t) $t \in \overline{R}_+$ adapted supermartingale for every $x^* \in X^*$ by Theorem 3.2. And a sequnce (A_n) of closed convex subsets in reflective space converged to A with respect to h, then (A_n) weak converge to A, i. e. $\sigma(x^*, A_n)$ converge to $\sigma(x^*, A)$ for every $x^* \in X^*$. Thus almost all trajectories of $(\sigma(x^*, F_t))$ $t \in \overline{R}_+$ is right continuous for every $x^* \in X^*$, and $\sigma(x^*, E_t)$ $t \in R_t$ is right continuous for every $t \in X^*$, and $t \in X^*$. Therefore $t \in X^*$ a. e. for any two stopping times $t \in X^*$ and $t \in X^*$. Therefore $t \in X^*$ $t \in X^*$ a. e.

Similarly, we have the following theorem:

3.4 Theorem

Let (\mathcal{F}_t) $t \in \mathbb{R}_+$ be right continuous, (F_t) $t \in \mathbb{R}_+ \subseteq \mathcal{L}_c^{-1}[\Omega]$, X] be $a(\mathcal{F}_t)$ $t \in \mathbb{R}_+$ — adapted set-valued submartingale (resp. set-valued martingale), its almost all trajectories be right continuous with respect to h. Then $\mathcal{E}[F_T/\mathcal{F}_S] \supset F_S$ (resp. = F_S) a.e. for any two stopping times T, S, and $T \geqslant S$.

Strong forms of Doob stopping theorems are discussed as follows: **3.5 Theorem**

Let (\mathcal{F}_t) $_t \in \overline{\mathbb{R}}_+$ be right continuous, (F_t) $_t \in \overline{\mathbb{R}}_+ \subset \mathcal{L}_c^{-1}[\Omega]$, XI be a set valued supermartingale, (resp. set-valued martingale, submartin-gale) and its almost all trajectories be right continuous with respect to h. If S,T are two stopping times, then

$$\begin{tabular}{ll} E F_T / {\bf 7}_S] \subset F_T \wedge_S & (resp. = F_T \wedge_S, \quad \supset F_T \wedge_S) & a.e. \\ \end{tabular}$$

Proof: Since (F_t) $_t \in \overline{R}_+$ is a (\mathcal{T}_t) $_t \in \overline{R}_+$ -adapted closed convex setvalued supermartingale (resp. set-valued martingale, submartingale) and its almost all trajectories are right continuous with respect to h, then $(\sigma(x^*, F_t))$ $_t \in \overline{R}_+$ is a (\mathcal{T}_t) $_t \in \overline{R}_+$ -adapted supermartingale (resp. martingale, submartingale) and its almost all trajectories are right continuous for each $x^* \in X^* = R^n$. Therefore $\sigma(x^*, \mathcal{E}_t F_T/\mathcal{T}_S) = \mathbb{E}[\sigma(x^*, F_T)/\mathcal{T}_S] \leq \sigma(x^*, F_T \wedge S)$ (resp. $=\sigma(x^*, F_T \wedge S)$, $\geq \sigma(x^*, F_T \wedge S)$) a. e. for any (\mathcal{T}_t) $_t \in \overline{R}_+$ stopping times S,T. Thus $\mathcal{E}[F_T/\mathcal{T}_S] \subset F_T \wedge S$ (resp. $=F_T \wedge S$, $\supset F_T \wedge S$) a.e. for any (\mathcal{T}_t) $_t \in \overline{R}_+$ stopping times T,S.

3.6 Theorem

Let (\mathcal{F}_t) $t \in \overline{\mathbb{R}}_+$ be right continuous, (F_t) $t \in \overline{\mathbb{R}}_+ \subset \mathcal{L}_c^{-1}[\Omega]$, XI be a (\mathcal{F}_t) $t \in \overline{\mathbb{R}}_+$ -adapted set-valued supermartingale, (resp. set-valued martingale) and its almost all trajectories be right continuous with respect to h. If S,T are two large stopping times, then

$$\text{S} \ F_T/\text{J}_{S^+} \cap F_T \wedge_S \quad (\text{resp.} = F_T \wedge_S) \quad \text{a.e.}$$

Proof: Since $(\sigma(x^*, F_t))$ $t \in \overline{R}_+$ is a (\mathcal{F}_t) $t \in \overline{R}_+$ -adapted supermartingale for every $x^* \in X^*$ and its all trajectories are right continuous. Then $\sigma(x^*, \mathcal{E}[F_T/\mathcal{F}_{S+}]) = E[\sigma(x^*, F_T)/\mathcal{F}_{S+}] \leq \sigma(x^*, F_{S \setminus T})$ (resp. = $\sigma(x^*, F_T \setminus S)$) a. e. for any two large stopping times T,S by classical results. Thus $\mathcal{E}[F_T/\mathcal{F}_{S+}] \subset F_T \setminus S$ (resp. = $F_T \setminus S$) a. e.

The following theorem is the predictable form of Doob stopping theorem.

3.7 Theorem

Let (\mathcal{I}_t) $t \in \overline{\mathbb{R}}_+$ be right continuous, (F_t) $t \in \overline{\mathbb{R}}_+ \subset \mathcal{L}_c^{-1}[\Omega]$, XI be (\mathcal{I}_t) $t \in \overline{\mathbb{R}}_+$ -adapted set-valued supermartingale (resp. set-valued martingale), and its almost all trajectories be right continuous with respect to h. Let $F_{0-} = \mathcal{E}[F_0/\mathcal{I}_{0-}]$, then

 $\mathcal{E}[F_S/\mathcal{I}_{T-}] \subset F_{T-} \text{ (resp. =} F_{T-}) \text{ a.e.}$

for any predictable time T and stopping time S \geqslant T, where \mathcal{F}_{0-} is a sub- σ -field of \mathcal{F}_{0} .

Proof: Since $(\sigma(x^*,F_t))_{t\in \overline{R}_+}$ is a $(\mathcal{F}_t)_{t\in \overline{R}_+}$ supermartingale for every $x^*\in X^*$ by Theorem 3.2, and almost all trajectories of $(\sigma(x^*,F_t))_{t\in \overline{R}_+}$ are right continuous by the proof of Theorem 3.3, and $\sigma(x^*,F_{0-})=\sigma(x^*,\mathcal{E}_t)_{0-}=\mathbb{E}[\sigma(x^*,F_0)/\mathcal{F}_{0-}]$ for every $x^*\in X^*$. Then $\sigma(x^*,\mathcal{E}_t)_{0-}=\mathbb{E}[\sigma(x^*,F_0)/\mathcal{F}_{0-}]$ for every $x^*\in X^*$. Then $\sigma(x^*,\mathcal{E}_t)_{0-}=\mathbb{E}[\sigma(x^*,F_t)/\mathcal{F}_{0-}]$ for every $x^*\in X^*$. Then $\sigma(x^*,\mathcal{E}_t)_{0-}=\mathbb{E}[\sigma(x^*,F_t)/\mathcal{F}_{0-}]$ for every $x^*\in X^*$, predictable time T, and stopping time T by classical results. Thus

$$\mathcal{E}[F_S/\mathcal{I}_{T^-}] \subset F_{T^-} \text{ (resp. } =F_{T^-}) \text{ a.e.}$$

4. The Doob stopping Theorems of Fuzzy Set-valued Martingales

4.1 Theorem

Let $(\mathcal{F}_t)_{t} \in \overline{\mathbb{R}}_+$ be right continuous, $(\widetilde{F}_t)_{t} \in \overline{\mathbb{R}}_+$ be a $(\mathcal{F}_t)_{t} \in \overline{\mathbb{R}}_+$ -adapted fuzzy set-valued supermartingale, and its almost all trajectories be right continuous with respect to d. Then

SIF_T/7_S]
$$\subseteq$$
F_S a.e.

for any two stopping times T,S, and $T \geqslant S$.

Proof: Since $(\widetilde{F}_t)_{t \in \overline{R}_+}$ is a $(\mathcal{F}_t)_{t \in \overline{R}_+}$ - adapted fuzzy setvalued supermartingale and its almost all trajectories are right continuous with respect to d, then $((\widetilde{F}_t)_{\alpha})_{t \in \overline{R}_+}$ is a $(\mathcal{F}_t)_{t \in \overline{R}_+}$

set -valued supermartingale, its almost all trajectories are right continuous with respect to h for each $\alpha \in (0,1]$ by $\mathcal{E}[\widetilde{F}_t/\mathcal{F}_s]_{\alpha}$ =

$$\mathcal{E}(\widetilde{F}_t)_{\alpha}/\mathcal{F}_s] \text{ and } d(\widetilde{F}_t(\omega),\widetilde{F}_{t0}(\omega)) = \sup_{\alpha \in \{0,1]} h((\widetilde{F}_t)_{\alpha}(\omega)),$$

 $(\widetilde{F}_{t_0})_{\alpha}(\omega))$. Therefore, $\mathcal{E}(F_T)_{\alpha}/\mathcal{I}_S \subset (\widetilde{F}_S)_{\alpha}$ a.e. for any two stopping times T,S and T \geqslant S by Theorem 3.3.

On the other hand, using the basic theorems of fuzzy set, $(\mathcal{E}[\widetilde{F}_T/\mathcal{I}_S](\omega))(x) = \bigvee_{\alpha} \bigwedge I_{(\mathcal{E}[\widetilde{F}_T/\mathcal{I}_S](\omega))_{\alpha}}(x), \text{ where } R_0 \text{ is the set of all rational numbers in } [0,1].$

Therefore we have $\mathcal{E}[\widetilde{F}_T/\mathcal{I}_S] \subset \widetilde{F}_S$ a.e. for any $(\mathcal{I}_t)_t \in \widetilde{R}_+$ stopping times T,S with T \geqslant S.

Similarly, we have the following theorem.

4.2 Theorem

Let $(\mathcal{F}_t)_t \in \overline{\mathbb{R}}_+$ be right continuous, $(\widetilde{F}_t)_t \in \overline{\mathbb{R}}_+$ be a $(\mathcal{F}_t)_t \in \overline{\mathbb{R}}_+$ fuzzy set-valued submartingale (resp. fuzzy set-valued martingale) and its almost all trajectories be right continuous with respect to d. Then

$$\mathcal{E}[\widetilde{F}_T/\mathcal{I}_S] \supset \widetilde{F}_S$$
 (resp. $=\widetilde{F}_S$) a.c.

for any two stopping times T, S, and $T \ge S$.

By basic theorems of fuzzy set and Theorem 3.5 to Theorem 3.7, correspondingly, the following strong forms and preditable form of Doob stopping theorems of fuzzy set-valued martingale(submartin-gale, supermartingale) can be obtained.

4.3 Theorem

Let $(\mathcal{I}_t)_t \in \overline{\mathbb{R}}_+$ be right continuous, $(\widetilde{F}_t)_t \in \overline{\mathbb{R}}_+$ be a fuzzy set -valued supermartingale (resp. fuzzy set-valued martingale, fuzzy set -valued submartingale) and its almost all trajectories be right continuous with respect to d. Then

4.4 Theorem

Let $(\mathcal{I}_t)_{t} \in \mathbb{R}_+$ be right continuous, $(\widetilde{F}_t)_{t} \in \mathbb{R}_+$ be a $(\mathcal{I}_t)_{t} \in \mathbb{R}_+$ fuzzy set-valued supermartingale (resp. fuzzy set-valued martingale, fuzzy set-valued submartingale) and its almost all trajectories be right continuous with respect to d. If S,T are two large stopping times, then

$$\stackrel{\text{\tiny E}}{\text{\tiny F}} \stackrel{\text{\tiny T}}{\text{\tiny T}} \stackrel{\text{\tiny T}}{\text{\tiny S}} \stackrel{\text{\tiny T}}{\text{\tiny T}} \stackrel{\text{\tiny T}}{\text{\tiny T}}} \stackrel{\text{\tiny T}}{\text{\tiny T}} \stackrel{\text{\tiny T}}{\text{\tiny T}} \stackrel{\text{\tiny T}}{\text{\tiny T}} \stackrel{\text{\tiny T}}{\text{\tiny T}}} \stackrel{\text{\tiny T}}{\text{\tiny T}} \stackrel{\text{\tiny T}}{\text{\tiny T}}} \stackrel{\text{\tiny T}}{\text{\tiny T}} \stackrel{\text{\tiny T}}{\text{\tiny T}}} \stackrel{\text{\tiny T}}{\text{\tiny T}} \stackrel{\text{\tiny T}}{\text{\tiny T}} \stackrel{\text{\tiny T}}{\text{\tiny T}} \stackrel{\text{\tiny T}}{\text{\tiny T}}} \stackrel{\text{$$

4.5. Theorem

Let $(\mathcal{F}_t)_t \in \overline{\mathbb{R}}_+$ be right continuous, $(\widetilde{F}_t)_t \in \overline{\mathbb{R}}_+$ be a $(\mathcal{F}_t)_t \in \overline{\mathbb{R}}_+$ fuzzy set-valued supermartingale (resp. fuzzy set-valued martingale) and its almost all trajectories be right continuous with respect to d. Let $\widetilde{F}_{0} = \mathcal{E}(\widetilde{F}_{0}/\mathcal{F}_{0})$, then

$$\mathcal{E}[\widetilde{F}_U/\mathcal{F}_{T^-}] \subset \widetilde{F}_{T^-} \text{ (resp. } = \widetilde{F}_{T^-} \text{)} \quad \text{a.e.}$$

for any predictable time T and stopping time $U \geqslant T$.

Refference

- [1] Li Shikai, (1994), Random Sets and Set-valued Martingales, Guizhou Scince Technical Publisher, China.
- [2] Zhang Wenxiu, (1989), Set-Valued Measure and Random Sets, Xi'an Jiao tong University Publisher, China.
- [3] Zhang Wenxiu & Gao Yong, (1994), Set-Valued Stochastic Processes, Scince Publisher of China.
- [4] Klein, E. & Thompson, A,C.,(1984), Theory of Correspondences, Tokn Wiley & Sons. Inc.
- [5] Yan Jia'an, (1981), Elemental Theory of Martingales and Stochastic Intergral, Shanghai Scince Thechical Publisher, China.
- [6] Li Shikai, (19992) Interval-valued Martingales and Fuzzy Number-valued Martingales, Fuzzy Systems and Mathematics 1(6).
- [7] Puri.M.L & Ralscu, D.A. (1983), Differentials of Fuzzy Functions, J. Math.

- Anal. Appl. 2(92)
- [8] Puri.M.L & Ralscu, D.A. (1986), Fuzzy Random Variables, J. Math. Anal. Appl. 2(114).
- [9] Papageorgiou, N.S., (1986), On the Efficiency and Optimality of Allocations II, SIAM. J. Control Optim., 24:3 (1986) 452-479.
- [10] Papageorgiou, N.S., (1987), Efficiency and Optimality in Economics
 Described by coalitions J.Math. Anal. & Appl. V116.
- [11] Hiai.F & Umegaki.H.(1977), Integrales of Multivalued Functions, J.Multi. Anal.Vol.7.