QUASI-CUT SETS AND OPERATIONS OF FUZZY SETS Yuan Xue-hai

Department of Mathematics, Liaoning Normal University,

Dalian 116029, P.R.China

1. Introduction

Let X be a set and A be a fuzzy subset of X, then λ -cut set and λ -strong cut set of fuzzy set A are defined as:

$$A_{\lambda} = \{x \mid x \in X \text{ and } A(x) \ge \lambda\}$$
 $A_{\lambda} = \{x \mid x \in X \text{ and } A(x) > \lambda\}$

From the point of neighborhood, we have: $x \in A_{\lambda} \longleftrightarrow A(x) \ge \lambda \longleftrightarrow x_{\lambda} \in A$. Prof.Luo Cheng-zhong has ever introduced a new concept of strong neighborhood. According to his definition[6], we have: $x \in A_{\lambda} \longleftrightarrow A(x) > \lambda$ $\longleftrightarrow x_{\lambda} \in A$. In this way, we can describe λ -cut set and λ -strong cut set as:

$$A_{\lambda} = \{x \mid x_{\lambda} \in A\}$$
 $A_{\lambda} = \{x \mid x_{\lambda} \in A\}$

It is well known that quasi-neighborhood play an important role in fuzzy topology. According to [1] we have:

$$x_{\lambda}qA(it is denoted as x_{\lambda} \in {}_{q}A) \longleftrightarrow \lambda + A(x) > 1$$

From the point of quasi-neighborhood, we can define a new kind of cut set as:

$$A_{1\lambda_1} = \{x \mid x_{\lambda} \in A\}$$

 $A_{t\lambda 1}$ is called as λ -strong quasi-cut set of fuzzy set A.

In this paper, we shall discuss some properties of quasi-cut set and give decomposition theorem and representation theorem based on quasi-cut sets. As applications, we shall give a new approach to define operations of fuzzy sets based on quasi-cut sets and Wang's falling shadows theory and obtain the same results as [2].

2. Theory of falling shadow and marginal-uniform joint distribution on $\left[0, 1\right]^2$

Given a universe of discourse X, $\mathbb{P}(X)$ denotes as power set of X. For any $x \in X$, let

$$\dot{x} = \{A \mid x \in A \text{ and } A \in \mathbb{P}(X)\}, \dot{A} = \{\dot{x} \mid x \in A\}$$

An ordered pair (P(X),B) is said to be hyper-measurable structure on X if \mathbb{B} is σ -field in $\mathbb{P}(X)$ and $X\subseteq \mathbb{B}$.

Given a probability space (Ω, A, P) and an hyper-measurable structure $(\mathbb{P}(X),\mathbb{B})$ on X, a random set on X is defined to be a mapping $\xi:\Omega\longrightarrow\mathbb{P}(X)$ that is A-B measurable, that is

 $\forall C \in \mathbb{B}, \ \xi^{-1}(C) = \{\omega \mid \omega \in \Omega \text{ and } \xi(\omega) \in C\} \in A$

Suppose that ξ is a random set on X. Then the covering function of ξ , denoted by $\hat{\xi}$, is defined to be the probability of ω for which $x \in \xi(\omega)$, that is, $\hat{\xi}: X \longrightarrow [0, 1]$ and $\hat{\xi}(x) = P(\omega | x \in \xi(\omega))$, for each $x \in X \cdot \hat{\xi}$ represents a fuzzy set A in X and we write $\xi=A$. We shall call the random set ξ a cloud on A, and A the falling shadows of the random set ξ .

Once the probability space has been determined, then to each fuzzy set A in X, there corresponds a family of random sets whose falling shadows are all equal to A. Thus it is an important issue on how to choose a representative cloud for A. Indeed, the simplest one is the mapping $\xi:[0, 1] \longrightarrow \mathbb{P}(X) \xrightarrow{\lambda} A_{\lambda}$. where A_{λ} is the λ -cut of A, that is $A_1 = \{x \in X \mid A(x) \ge \lambda \}.$

Let $\mathbb B$ is a Borel field on [0, 1] and m is a Lebesgue measure. Let joint probability ($[0, 1]^2$, \mathbb{B}^2 ,P)=([0, 1], \mathbb{B} ,m)×([0, 1], \mathbb{B} ,m), where $P(A\times[0, 1])=m(A)$, $P([0, 1]\times A)=m(A)$, for each $A\in B$, then there are infinitely many possibilities of joint distribution of P on the unit square [0, 1]2. We shall refer P to as a marginal-uniform joint distribution on [0, 1] and consider the following three basic cases.

I. Perfect positive correlation

If the whole probability P of (λ, μ) on $[0, 1]^2$ is concentrated and uniformly distributed on the main diagonal $I=\{(\lambda,\lambda)|\lambda\in[0, 1]\}$ of the unit square $\left[0,\ 1\right]^2$, then we say the variables λ and μ are in perfect positive correlation.

II. Perfect negative correlation

If the whole probability P of (λ, μ) on $[0, 1]^2$ is concentrated and uniformly distributed on the anti-diagonal $I=\{(\lambda,1-\lambda)|\lambda\in[0,1]\}$ of the unit square $[0, 1]^2$, then we say that the variables λ and μ are in perfect negative correlation.

III. Independent

If the whole probability P of (λ,μ) on $[0, 1]^2$ is uniformly

distributed on the unit square $[0, 1]^2$, then we say that the variables λ and μ are independent.

3.Definition and properties of quasi-cut set

Definition 3.1 Let A be a fuzzy subset of set X, then
$$A_{(\lambda)} = \{x \mid x \in X, \lambda + A(x) \ge 1\}, A_{(\lambda)} = \{x \mid x \in X, \lambda + A(x) > 1\}$$

are called as λ -quasi-cut set and λ -strong quasi-cut set of fuzzy set A respectively.

Definition 3.2 Let X be a set and $H:[0\ 1] \longrightarrow P(X)$, $\lambda \longrightarrow H(\lambda)$ satisfy: $\lambda_1 < \lambda_2 \longrightarrow H(\lambda_1) \subseteq H(\lambda_2)$, then H is called as a order nested set over X.

Clearly, $H(\lambda) = A_{t\lambda_1}$ or $A_{t\lambda_1}$ is a order nested set over X respectively.

Theorem 3.1 (1)
$$(AUB)_{[\lambda]} = A_{[\lambda]} UB_{[\lambda]}$$
, $(AUB)_{[\lambda]} = A_{[\lambda]} UB_{[\lambda]}$,

$$(A \cap B)_{t\lambda_1} = A_{t\lambda_1} \cap B_{t\lambda_1}, \quad (A \cap B)_{t\lambda_1} = A_{t\lambda_1} \cap B_{t\lambda_1}$$

$$(3) \quad (\bigcup_{t \in T}^{t})_{[\lambda]} \supseteq \bigcup_{t \in T}^{t}, \quad (\bigcup_{t \in T}^{t})_{[\lambda]} = \bigcup_{t \in T}^{t}, \quad (\bigcap_{t \in T}^{t})_{[\lambda]} = \bigcap_{t \in T}^{t}, \quad (\bigcap_{t \in T}^{t})_{[\lambda]} = \bigcap_{t \in T}^{t},$$

(4)
$$(A_{t\lambda_1})^c = (A^c)_{t1-\lambda_1}, \quad (A_{t\lambda_1})^c = (A^c)_{t1-\lambda_1}$$

$$(5) \ \ A_{\bigcup_{t \in T} 1^2} \supseteq \bigcup_{t \in T} A_{t\alpha_t}, \ \ A_{\bigcup_{t \in T} 1^2} = \bigcap_{t \in T} A_{t\alpha_t}, \ \ A_{\bigcup_{t \in T} 1^2} = \bigcup_{t \in T} A_{t\alpha_t}, \ \ A_{\bigcup_{t \in T} 1^2} = \bigcap_{t \in T} A_{t\alpha_t}$$

4. Decomposition theorem and representation theorem based on quasi-cut sets.

Let C be a subset of set X and $\lambda \in [0,1]$, we define λC as a fuzzy subset of X and

$$(\lambda C) = \begin{cases} \lambda, & x \in C \\ 0, & x \notin C \end{cases}$$

then we have

Theorem 4.1 (1)
$$A=U\lambda^{\circ}A_{\{\lambda\}}$$
, (2) $A=U\lambda^{\circ}A_{\{\lambda\}}$, (3) Let $H:[0, 1] \longrightarrow (X)$

$$\text{satisfy:} A_{[\lambda]} \subseteq H(\lambda) \subseteq A_{[\lambda]}, \text{ then (i) } \lambda_1 < \lambda_2 \longrightarrow H(\lambda_1) \subseteq H(\lambda_2); \text{(ii) } A = \bigcup \lambda^{\circ} H(\lambda) \\ \lambda \in [0, 1]$$

(iii)
$$A_{t\lambda_1} = \bigcap_{\alpha > \lambda} H(\alpha), \quad A_{t\lambda_1} = \bigcup_{\alpha < \lambda} H(\alpha)$$

Let $\mathbb{U}(X)$ be set of order nested sets over X, we define operations V, \cap , on V(X) as following:

then we have:

Theorem 4.2 Let F(X) be a set of fuzzy subset of X on [0, 1]. Let

$$T:U(X)\longrightarrow F(X)$$
 $T(H)=U\lambda^{c}H(\lambda)$, then $\lambda \in [0, 1]^{c}$

- $(1) T(H)_{[\lambda]} \subseteq H(\lambda) \subseteq T(H)_{[\lambda]}, (2) T(H)_{[\lambda]} = \bigcap_{[\lambda]} H(\alpha), T(H)_{[\lambda]} = \bigcup_{[\alpha]} H(\alpha)$
- (3) T is a homomorphism from $(U(X), U, \Lambda, c)$ to $(F(X), U, \Lambda, c)$, i.e.
- (i) For any $A \in \mathbb{F}(X)$ there is a $H \in \mathbb{U}(X)$ such that T(H) = A;

(ii)
$$T(U_{r}) = UT(H_{r})$$
, $T(\bigcap_{r \in \Gamma} H_{r}) = \bigcap_{r \in \Gamma} T(H_{r})$, $T(H^{\circ}) = T(H)^{\circ}$

5. Operations of fuzzy sets based on falling shadows theory and quasi-cut sets

Let A and B be fuzzy sets in the universe X. Let ${\mathbb B}$ a Borel field on [0, 1] and m be a Lebesgue measure, the joint probability space is $([0, 1]^2, \mathbb{B}^2, P)$ and both of the projection of P on the [0, 1] are the Lebesgue measure m.

Theorem 5.1 Let $\xi:[0, 1] \longrightarrow \mathbb{P}(X) \xrightarrow{\lambda} A_{[\lambda]}$ be a random set over X, then

$$A(x) = m(\lambda \mid \lambda \in [0,1], x \in A_{(\lambda)})$$
(1)

In [2], by the use of falling shadow theory and cut sets, a theoretical approach to define operations of fuzzy sets is built. In this part, we shall rebuild this approach based on falling shadow theory and quasi-cut sets.

Let
$$\xi : [0 \ 1]^2$$
 $\eta : [0 \ 1]^2$
$$(\lambda, \mu) \longrightarrow A_{[\lambda]} \qquad (\lambda, \mu) \longrightarrow B_{[\lambda]}$$
 (2)

be random sets over X, we define:

$$\xi \cup \eta$$
: $(\xi \cup \eta)(\lambda, \mu) = \xi(\lambda, \mu) \cup \eta(\lambda, \mu) = A_{(\lambda)} \cup B_{(\mu)}$

$$\xi \cap \eta : (\xi \cap \eta)(\lambda, \mu) = \xi(\lambda, \mu) \cap \eta(\lambda, \mu) = A_{t\lambda 1} \cap B_{t\mu 1}$$

then $\xi U\eta$ and $\xi \eta \eta$ are also random sets over X, then we have:

Definition 5.1 AUB and ANB are defined as falling shadows of $\zeta U \eta$ and $\xi \cap \eta$ respectively, i.e.

$$(AUB)(x) = P((\lambda, \mu) \mid x \in A_{t\lambda_1} UB_{t\mu_1}), \quad (A\cap B)(x) = P((\lambda, \mu) \mid x \in A_{t\lambda_1} \cap B_{t\mu_1})$$

Let $E_{1} = [0, A^{c}(x)] \times [0, B^{c}(x)], E_{2} = [0, A^{c}(x) \times [B^{c}(x), 1]$ $E_{3} = [A^{c}(x), 1] \times [B^{c}(x), 1], E_{4} = [A^{c}(x), 1] \times [0, B^{c}(x)]$

then we have :

Theorem 5.2
$$(AUB)(x)=P(E_2UE_3UE_4)$$
, $(A\cap B)(x)=P(E_3)$ (3)

Theorem 5.3 (i). If the fuzzy sets A and B are in perfect positive correlation, then the formula (3) will become:

$$(AUB)(x)=\max\{A(x),B(x)\}, (A\cap B)(x)=\min\{A(x),B(x)\}$$
(4)

(ii) If the fuzzy sets A and B are in perfect negative correlation, then formula (3) will become:

$$(AUB)(x)=\min\{A(x)+B(x),1\}, (A\cap B)(x)=\max\{A(x)+B(x)-1,0\}$$
 (5)

(iii) If the fuzzy sets A and B are independent, then formula (3) will become:

$$(A \cup B)(x) = A(x) + B(x) - A(x)B(x), \quad (A \cap B)(x) = A(x)B(x)$$
(6)

Refernces

- [1]P.M.Pu and Y.M.Liu, Fuzzy topology I:neighborhood structure of a fuzzy point and more-simth convergence, J.Math.Anal.Appl., 76(1980) 571-599
- [2]S.K.Tan.P.Z.Wang and E.S.Lee, Fuzzy set operations based on the theory of falling shadows, J.Math.Anal.Appl., 174(1993) 242-255
- [3]I.R.Goodman, Fuzzy sets as equivalent classes of random sets, In Recent Developments in Fuzzy sets and possibility Theory, (R.Yager, ed.), Pergamon press, New York(1982).
- [4]P.Z.Wang, Fuzzy sets and falling shadows of random sets, Beijing Normal University Press(China, 1985)(in Chinese)
- [5]Luo Cheng-zhong, Introduction to fuzzy (I)(II), Beijing Normal University Press, 1989,1993