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Abstract

In common sense reasoning, logical connectives such as “and” have
two different meanings. For example, if A stands for “I have a dollar”, B
for “I can buy a can of coke”, C for “I can buy a cookie”, and let coke
and cookie cost $1 each. Then, A — B and A — C. In 2-valued logic,
we can conclude that A — (B&C), but, since our resources are limited,
with $1, we cannot buy both a coke and a cookie. We need two dollars
to buy both, which can be expressed as (A&A) — (B&C). (Here, clearly,
ALA#£A)

To formalize these two meaning, a new logic with several connectives
for “and”, “or”, etc., was proposed in 1987 called linear logic. In this
paper, we show that from the algebraic viewpoint, fuzzy logic can be
viewed as an important particular case of linear logic. For this particular
case, we find the explicit expressions for new logical operations proposed
by linear logic.

1 A Brief Introduction

To describe commonsense reasoning, a new logic was proposed in 1987 called
linear logic. Although this logic intends to describe the same reasoning as fuzzy
logic, these two logics were so far largely unrelated. In this paper, we show that

in some reasonable sense, fuzzy logic can be viewed as a particular case of linear
logic.



2 What is Linear Logic

Some researchers believe that only formalisms with A&A = A can be called
logics, because from the common sense viewpoint, A&A means the same as
A. On the other hand, if we have two independent statements A and A’ with
equal degrees of belief d(A) = d(A') = a, then the degree of belief that both
statements are true is smaller than the degree of belief a that one of them is
true: fg(a,a) < a; hence, such formalisms adequately describe human reasoning
and therefore, deserve the name of “logic”.

There exists a logic (called linear) in which A&A # A [2, 7). The following
example explains its idea: let A stands for “I have a dollar”, B for “I can buy a
coke”, C' for “I can buy a cookie”, and let coke and cookie cost $1 each. Then,
A — B and A — C. In 2-valued logic, we can conclude that A — (B&C), but,
since our resources are limited, with $1, we cannot buy both a coke and a cookie.
We need two dollars to buy both, which can be expressed as (4&A) — (B&C).
Here, clearly, A&A # A.

In traditional 2-valued logic, since A&A mean the same thing as A4, in a
proof, we can use any premise A as many times as we want. As a result, if we
represent the proof graphically, the original premise A may branch into several
possible branches that correspond to uses of A in different parts of the proof
(e.g., in the above example, A is used to prove B and to prove C in the proof
of B&C). As a result, we get a tree. In resource-bounded logic, we cannot use
a premise twice, so, we cannot branch, and the proofs become linear (hence the
name of this logic).

Linear logic was originally proposed to describe such bounded resources as
the number of available processors, but degree of belief can also be viewed as a
resource [1]: For example, in 2-valued logic, from the statement “all birds fly”
(Vb F(b)), we can conclude that F(b;)&...&F(b,) for any number of birds n.
If we only have some degree of belief in Vb F(b), then we may be able to believe
that F(b;) for a “randomly” picked bird b;, but our degree of belief that, say,
108 birds located in some area all fly will be much smaller, almost at the level
of disbelief.

An interesting feature of linear logic is that it has two different connectives
to describe the commonsense statement “B and C”: “both”, meaning that we
can have both conclusions, and “and”, meaning that we can have B, and we
can have C, but not necessarily both. For “both”, we have A“both” A # A;
for “and”, we have A“and”A = A. Crudely speaking, “and” correspond to
min(a, b), while “both” looks more like a - b.

Comment. As we have noticed in [4], the idea of this fine distinction is not com-
pletely alien to fuzzy logic: namely, this distinction may explain the necessity to
use several different &—operations in fuzzy control [6]: as the control situation
changes, we are not changing the way we think (that would be impossible), we
are just changing the meaning of the word and. In [4], we simply described this
as an idea. In this paper, we show that the two formalisms (of linear and fuzzy



logic) can be naturally combined. We hope that this combination will be helpful
to both logics.

Similarly to “and”, other logical connectives have several different represen-
tations in this logic.

In addition to these connectives, linear logic has a special connective !'A
(“absolutely A”) that, crudely speaking, corresponds to the absolute degree of
belief in A; if !4 is true (i.e., if A is absolutely true), then we can use this
statement A as many times as we want. In other words, in contrast to the
fact that in general, in linear logic, A&A # A, the conjunction (1A4)&(!A) is
equivalent to !A.

3 An Algebraic Approach to Linear Logic: Idea

Logics are often described in algebraic terms: Namely, if we have a theory based
on a given logic, then we say that two statements S and S’ from this theory
have the same degree of beliefif in this theory, we can prove that S is equivalent
to S’ (i.e., that S implies S’ and that S’ implies S). Thus, we can define
a degree of belief as a class of all formulas that are equivalent to each other.
Logical operations are usually consistent with this equivalence: namely, if S is
equivalent to S’, and T is equivalent to T", then S&T is equivalent to S'&7T". As
a result, each logical connective becomes an operation on the set X of degrees
of belief: namely,if z,y € X, i.e., if £ and y are classes of equivalent statements,
then we can take any statements S € z and T € y and define z&y as a class of
statement that are equivalent to S&T. '

In particular, in 2-valued logic, if we take a complete theory (i.e., a theory
in which every statement is either provably true or provably false), then the
set of degrees of belief consists of only two statements: “true” and “false”. In
general, for 2-valued logic, the set of degrees of belief forms a Boolean algebra.
For 2-valued logic, it is not necessary to describe all operations: it is sufficient,
e.g., to describe & and —, then V and — can be expressed in terms of these two
connectives: z V y is equivalent to —((~z)&(-y)), and  — y is equivalent to
yV (—z).

Alternatively, one can choose & as the only basic operation, define the im-
plication @ — b as sup{z : z&z < y}, and negation =z as z — L, where L is
the bottom element of the Boolean algebra.

A similar idea can be applied to linear logic. The resulting algebraic structure
is described, e.g., in [7].

Comment. To clearly indicate the difference between operations of linear logic
and operations of traditional logic, different symbols are used in linear logic. In
this paper, following [7], we will use ~ z for negation in linear logic, —o for linear
implication, x for “both”, and A for the regular “and” (for which A“and” A is
equivalent to A).



This regular “and” is simply a lattice operation for the order < defined as
follows: A < B iff A&B is equivalent to A. So, instead of saying that we have
two operations, we can say that we have a single operation * and an order <.

It is natural to assume that A&B means the same as B&A, and that
A&(B&C) means the same as (A&B)&C. Therefore, the operation % is com-
mutative and associative. In mathematical terms, this means that the set X of
degrees of belief with an operation * forms a commautative semigroup.

The operations » and < must also be consistent. As a result, we arrive at
the following formalism (described in [7]).

4 An Algebraic Approach to Linear Logic:
Formalism

Definition 1. [7] A lattice ordered commutative semigroup (X, <,,1) with
unit 1 is called a quantale if the following two conditions hold:

¢ (X,<) is a complete lattice;

o for every z € X, and for every set S C X,

z*\/s: \/(z*s).

SES sES

Based on “and” (%), we can define implication and negation in a way that is
similar to 2-valued logic:

Definition 2. [7] Let (X, <,*,1) be a quantale. Then:
o the value false L is defined as the smallest element of the lattice (X, <);

o linear implication z—oy is defined as
z—oy=\/{z: 2%z < y);
o the value true T is defined as 1 —o1;

e negation ~ x as z—o.l.

The operation “z is absolutely true” (!z) is new; it cannot be described directly
in terms of the already defined operations. To describe !, we must use its
relationship with the previous operations:



Definition 3. [7] By an linear logic, we mean a tuple
(X’ <’ A’ V’ -L’ T’ _o’ *’ N’ !’ 1)’
where:
¢ (X,<,,1) is a quantale, with lattice operations A and V;
e L, T, —o, and ~ are defined as in Definition 2; and
e !: X — X is a function that satisfies the following four conditions:
(i) foreveryz € X, 1z < ;
(ii) for every z,y € X, if 'y < z, then 'y <lz;
(i) 1=IT;
(iv) for every z,y € X, lzxly =!l(z A y).

Comments.

e These four conditions naturally follow from the intended meaning of !:

e.g., (i) means that our degree of belief that z is absolutely true cannot
exceed the degree of belief in z, etc.

e The formalism described above is called intuitionistic linear logic, because
for this formalism (similarly to the so-called intuitionistic logic), double
negation ~ (~ z)) of a statement z is not necessarily equivalent to the
original statement . The particular case for which ~~ z = z is called
classical linear logic.

o The author of [7] complains that so far, there are few applications of this
algebraic formalism. We are now going to show that traditional fuzzy logic
operations can be represented as a particular case of this formalism, and

thus, numerous applications of fuzzy logic can be viewed as applications
of linear logic.

5 Examples Related to Fuzzy Logic

In fuzzy logic, the set of degrees of belief X is an interval [0, 1], with the natural
order <. Possible “and” operations * correspond to #-norms. The most widely
used t-norms are the following (see, e.g., [3, 5]):

e idempotent operation z x y = min(z, y);

e strict Archimedean operations; the most widely used of such operations is
T xYy = z -y, an arbitrary strict Archimedean operation can be described
by a formula zxy = ¢~ (¢(x) - ¢(y)) for some strictly monotonic function
o :[0,1] - [0,1].



e non-sirict Archimedean operations; the most widely used of such opera-
tions is zxy = max(z+y~—1, 0); an arbitrary strict Archimedean operation
can be described by a formula z x y = ¢~ !(max{p(z) + ¢(y) — 1,0}) for
some strictly monotonic function ¢ : [0,1] — [0, 1].

In the following, we will specify linear logics corresponding to each of the above
t-norms.

The results are that for idempotent operation «, the corresponding operation
! is not uniquely defined, whereas for non-idempotent t-norms the operation ! is
uniquely defined.

6 Linear Logic Operations in Fuzzy Logic Case

6.1 Idempotent “And”-Operation

The case when «x is an idempotent operation, i.e., when z x y = min(z,y), is
not a typical case of linear logic, because in this case, the two “and” operations
simply coincide. However, we will consider this case, because min is one of the
most important and most frequent operations in fuzzy logic applications.

For this case, linear logic is not uniquely determined. All possible linear
logics are described by the following proposition:

PROPOSITION 1.

o Ifin a linear logic, X = [0, 1], < is a standard order, and zxy = min(z, y),
then:

o 1 =0,T=1,

e rzoy=1lifz<yandzoy=yifz >y

e ~z=1lifr=0,and~2z2=0 forz >0,

o there ezxists a subset F C [0,1] such that !z =sup{f € F: f < z}.

o Vice versa, for every set F C [0, 1], the tuple
(X =1[0,1],<,A=min,V =max, L, T,—o,%,~,1,1)
with the above-defined L. =0, T =1, —o, ~, and !, is a linear logic.
Comments.
o For reader’s convenience, all the proofs are placed in the last section.

e Since, as we have mentioned, this is not a typical case of linear logic, !z
does not necessarily mean “z is absolutely true”. It rather means that we
choose some set F' of approzimating degrees of belief, and that !z is an
approximation from F'; for example:



10

o If F =[0,1)], then !z = =.
e If F={0,1},then!1=1land!z=0forz < 1.
o If for some n, F = {0,1/n,2/n,...,1—1/n,1}, then !z = |nz]|/n.

6.2 Strict Archimedean “And”-Operations a

PROPOSITION 2. If in a linear logic, X = [0,1], < is a standard order, and
zxy==z-y, then:

o Ll =0;T=1;
e z—oy = min(1,y/z);

e~zx=1ifz=0,and~z=0 forz>0;

lz=1ifz=1,and'z=0 whenz < 1.

PROPOSITION 3. If in a linear logic, X = [0,1], < is a standard order, and
* 18 a generic strict Archimedean operation z xy = ¢~ 1(p(z) - p(y)), then:

e L =0,T=1,
e z—oy = min(1, v~ (p(y)/¢(z));
e~z=1ifz=0,and~z=0 forz>0;

elz=14ifz=1, and !z =0 when z < 1.

6.3 Non-Strict Archimedean “And”-Operations

PROPOSITION 4. If in a linear logic, X = [0,1], < s a standard order, and
zxy =min(z +y— 1,0), then:

e 1L=0;,T=1;
o z—oy =min(l,1+y— z);
e ~z=1-—zg;
elz=1ifz=1, andlz =0 when z < 1.
Comment. In this case, ~~ z = z, 80 it is a classical linear logic.

PROPOSITION 5. If in a linear logic, X = [0,1], < is a standard order, and
* 18 an arbitrary non-strict Archimedean operation

z*xy = ¢~ (max{p(z) + ¢(y) — 1,0}), then:
e L=0;T=1;
e z—oy =min(l, p~(1 + ¢(y) — ¢(2)));
o ~z =y l(1-p(2));

lz=14ifz=1 and !z =0 when z < 1.
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7 Proofs

7.1 Proof of Proposition 1

Since < is a natural order on the interval [0,1], we have L = 0 and V = sup.
Therefore, according to the definition of —~o, we have

z—oy = sup{z : min(z, z) < y}.
Then:

e If x < y, then for every z € [0,1], we have min(z,2) < ¢ < y, and
therefore, the desired supremum is equal to 1.

o Let us now consider the case when £ > y. In this case, the inequality
min(z, z) < y is only possible when z < y. The largest of such z is y.
Hence, in this case, the desired supremum is equal to y. -

For £ = y = 0, we have min(z,0) =0 < 0 for all 2, so, T = 0—o0 = 1.

For z > 0, we have ~ £ = 200 = 0.

Let us now describe possible operations !. For every !, we can define F as
the range of !, i.e., as the set of all the values !z for different = € [0,1]. Then,
according to part (i) of Definition 3, for every x, we have !z € F. To complete
the proof of the Proposition, it is sufficient to show that !z is the largest element
of F that is < z. Indeed, let f € F and f < z. Then, since f € F, we have
f =y for some y. According to part (ii) of Definition 3, we from f =ly < z, it
follows that f =!y <!z, i.e., !z is indeed the largest element of F that is < z.

Vice versa, the fact that the above formula defines ! for every set F, follows
from Theorem 8.18 [7]. Q.E.D.

7.2 Proof of Propositions 2 and 3

Let us first prove Proposition 2. Since < is a natural order on the interval [0, 1],
we have | = 0 and V = sup. Therefore, according to the definition of —o, we
have z—oy = sup{z:z -2 < y}. Then:

o If z < y, then for every z € X = [0,1], we have z - z = y and therefore,
the desired supremum is equal to 1.

e If z > y, then the inequality z - 2 < y is only true for z < y/z. So, the
least upper bound of the set of all such z is equal to y/z.

Combining these two cases, we get the desired expression min(1, y/z).

The only case that is not covered by this definition is £ = y = 0. In this
case, z -« < y for all z and therefore, {2 : z-z < y} = [0, 1], and the supremum
of this set is equal to 1. Hence, T = L—ol = 0-00=1.

Now, ~ 0 = 0—0 = 1, and for z > 0, we have ~ £ = 2—00 = min(1,0/z) =
0.

Let us now find !z for different z.
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e Since we have proved that T = 1, we can conclude from part (iii) of the
definition of ! that !1 = 1.

e Let £ < 1; then, by applying part (iv) of the definition of ! with y = z,
we conclude that (Iz) - (!z) =!z, i.e., that (Iz)? =!z. Therefore, !z = 0 or
'z = 1. From part (i), it follows that !z < z < 1, so !z = 1 is impossible.
Hence, in this case, !z = 0.

Proposition 2 is proven.
Using isomorphism ¢ between an arbitrary strict Archimedean operation

and z -y, we can easily extend this result to an arbitrary strict Archimedean
operation x, thus proving Proposition 3. Q.E.D.

7.3 Proof of Propositions 4 and 5

Let us first prove Proposition 4. Since < is a natural order on the interval [0, 1],
we have L. = 0 and V = sup. Therefore, according to the definition of —o,
we have z—oy = sup{z : max(0,z + z — 1) < y}. Since 0 < z, the inequality
max(0,z+z—1) < yisequivalent toz +2—1< y, ie,, toz < y+1-—1=z.
Therefore, the linear implication z—oy that is equal to the largest of the values
z € [0,1] that satisfy this inequality, is equal to min(1,y+ 1 — z).

In particular, forz =y =0, we get T =0—-0 = 1.

Hence, ~z = z—00 =min(l,1—z)=1-z forall z € X.

To complete the proof of this Proposition, let us find !z. For z = 1, we
have !T =!1 = 1. For z < 1, we can apply (iv) with y = z, and conclude
that !zxlx = max(0,2-!z — 1) =!z. Hence, either !z = 0,0or lz = 2.z — 1. In
the second case, !z = 1, but we have !z < z < 1. Hence, the second case is
impossible, and for z < 1, we have !z = 0. Proposition 4 is proven.

Using isomorphism ¢ between an arbitrary non-strict Archimedean opera-
tion and max(z + y — 1,0), we can easily extend this result to an arbitrary
non-strict Archimedean operation *, thus proving Proposition 5. Q.E.D.
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