Some convergence theorem for sequences of integrals of B-function on the fuzzy set

Liu Ya-Ping and Zhou Zi-Liang
Department of mathematics, Chengde Medical College,
Chengde, Hebei, 067000, P.R. Ching

Abstract: In this paper, some convergence theorems for sequences of integrals of real-valued B-functions with respect to real-valued fuzzy measure on the fuzzy set are disscussed.

Keywords: Fuzzy set, fuzzy measure, B-function, m-integral.

1. Introduction

Dan [1-3] introduced some particularly additive operations with fuzzy sets, given the integral of the real-valued B-function with respect to real-valued fuzzy measure on the fuzzy set, and obtained the monotone increasing convergence, the Fatou's lemma, and the control convergence theorem for the sequence of intergrals of B-functions on the fuzzy set. Zhang [4-5] introduced the fuzzy number-valued measure and the fuzzy numbere-valued fuzzy intergral on the fuzzy set, given a series of convergence theorems for the sequence of fuzzy number-valued integrals on the fuzzy set.

In this paper, we go right to discuss convergencity for the sequence of integrals of B-functions on the basis of the Dan [1-3], obtain the decreasing convergence theorem, Fatou's lemma, the everywhere convergence theorem, the almost everywhere convergence and so on. The theory of integrals of B-functions on the fuzzy set is perfected.

The paper is divided into three sections. In Section 2, we recall some elementary definitions in [1-3]. In Section 3, we show a series of important convergence theorems for sequences of B-functions on the fuzzy set.

Throughout this paper, let X be a nonempty set, $F(X) = \{A; A: X \rightarrow [0,1]\}$ be a the class of fuzzy sets. All concepts and signs are not explained this paper may be founed in [1-3]. We also make the convention $0 \cdot \infty = 0$.

2. Preliminaries

Definition2.1 Let A and B be twe fuzzy sets:

- (a) The sum of A and B is the fuzzy set $A \oplus B$ defined by $(A \oplus B)(x) = \min(1, A(x) + B(x)) (x \in X)$.
- (b) The difference of A and B is the fuzzy set $A \odot B$ defined by $(A \odot B)(x) = man(0, A(x) B(x))$ $(x \in X)$.
- (c) The conjunction of A and B is the fuzzy set A&B defined by $(A\&B)(x)=\max(0,A(x)+B(x)-1)$ $(x \in X)$.
- (D) The product of A and B is the fuzzy set A \cdot B defined by $(A \cdot B)(x) = A(x) \cdot B(x) \quad (x \in X)$.

Definition 2.2 Let $F \subset F(X)$ be a σ -additive class of fuzzy sets, a fuzzy measure on F is a set function $m: F \to \overline{R}_+$ with the properties:

- (1) m(X)=0:
- (2) If $\{A_n\} \subset F$ is a disjoint sequence, then $m(\bigoplus_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} m(A_n).$

Definition 2.3 We say that f is a B-function on A iff there exists a sequence $(s_n)_{n \in \mathbb{N}}$ of nonnegative dominions of f on A so that

$$s_{n+1} \geqslant_A s_n (n \in \mathbb{N})$$
 and $\lim_{n \to \infty} s_n(x) \cdot A(x) = f(x) \cdot A(x) \quad (\forall x \in \mathbb{X}).$ (*)

If f is a B-function on X, we say that f is a B-function.

Definition 2.4 Let $f: X \to \overline{R}_+$ be a B-function on $A \in F$. If $(s_n)_{n \in N} \subset B_+(f, A)$ so that (*) holds, then we denote

$$\int_{A} f dm = \lim_{n \to \infty} \int_{A} s_n dm$$

and we call it m-intergal of f on A. If $\int_A f dm < +\infty$, then we say that f is m-integrable on A.

Definition 2.5 We say that f is a B-function on $A \in F$ iff f_+ and f_- are B-function on A. If f_+ and f_- are m-integrable B-functions on A, then f is said to be m-integrable on A. And the real number

$$\int_A f dm = \int_A f_+ dm - \int_A f_- dm$$

is called m-integral of f on A.

Definition 2.8 Let A (F, P is a proposition and m be a fuzzy measure.

(a) If $X_{\text{supp}A} \in F$, such that P is true on suppA, then we say "P is every where true on A".

(b) If there exists a E∈F, E⊂A with m(E)=0, such that P is true on A.
E, then we say "P is almost everywhere true on A."

We denote 'almost everywhere' by 'a.e.'

3. Convergence theorems for sequence of integrals of B-function on the fuzzy set

Theorem3.1 Let $f_n: X \to \overline{R}_+(n \in N)$ be B-functions, $A \in F$, $f_n \downarrow f(x \in X)$. If f is m-integral on A, then $\lim_{n \to \infty} \int_A f_n dm$ exists, and

$$\int_{A} f dm = \lim_{n \to \infty} \int_{A} f_n dm.$$

Theorem3.2(Fatou's Lemma) Let $f_n: X \to \overline{R}_+(n \in \mathbb{N})$ be B-functions, $A \in F$, $f = \lim_{n \to \infty} f_n(x \in X)$, $A \in F$. If f is m-integrable on A, then $\lim_{n \to \infty} \sup \int_A f_n \, dm$ exists, and

$$\int_{A} f dm > \lim_{n \to \infty} \sup_{n \to \infty} \int_{A} f_{n} dm$$
.

Theorem3.3 Let $f_n: X \to \overline{R}(n \in N)$ be B-functions, $f = \lim_{n \to \infty} f_n(x \in X)$, $A \in F$. If f is m-integrable on A, then $\lim_{n \to \infty} \int_A f_n \, dm$ exists, and $\int_A f \, dm = \lim_{n \to \infty} \int_A f_n \, dm$.

Lemma 3.1 Let $f: X \to \overline{R}$ be a B-function. If f is m-integrable on $A \oplus B$, and $A \oplus B = \phi$, $A \oplus B \in F$, then

JA@DBf dm= JAf dm+ JBf dm.

Lemma 3.2 Let f.g: $X \rightarrow \overline{R}$ be two B-functions, and f=g a.e., $A \in F$, then $\int_A f \ dm = \int_A g \ dm$.

Therem3.4 Let $f_n: X \to \overline{R}(n \in \mathbb{N})$ be B-functions, $f = \lim_{n \to \infty} f_n$ a.e. $(x \in X)$, $A \in \mathbb{R}$. If f is m-integrable on A, then $\lim_{n \to \infty} \int_A f_n \, dm$ exists, and $\int_A f \, dm = \lim_{n \to \infty} \int_A f_n \, dm.$

Definition3.1(F-aean) Let $f_n: X \to \overline{R}(n \in \mathbb{N})$ be B-functions, $A \in F$, then $\{f_n\}$ is said to F-mean converge to an a.e. finite B-function f, if $\lim_{n \to \infty} \int_A |f_n| dm=0$.

Theorem3.5 Let $f_n: X \to \overline{R}(n \in N)$ be B-functions, $A \in F$. If $\{f_n\}$ F-mean converge to f, and f is m-integrable on A, then $\lim_{n \to \infty} \int_A f_n \, dm$ exists, and

$$\int_{A} f \ dm = \lim_{n \to \infty} \int_{A} f_n \ dm.$$

References

- (1) D.Butnariu, Additive fuzzy measures and integrals I, J.Math.Anal.Appl. 93,2(1983),436-452.
- (2) D.Butnariu, Fuzzy measurability and integrability, J. Math. Anal. Appl. 177(1988), 385-410.
- (3) D.Butnariu. Additive fuzzy measures and integrals III. J. Math. Anal. Appl. 125(1987), 288-303.
- (4) Zhang Guangquan, Fuzzy number-valued fuzzy measure and fuzzy number -valued fuzzy integral on the fuzzy set, Fuzzy Sets and Systems 49 (1992) 357-376.
- (5) Zhang Guangquan. The convergence for a sequence of fuzzy integrals of fuzzy number-valued functions on the fuzzy set. Sets and Systems 59 (1993) 43-57.
- (6) P.R. Halmos, Measure Theory, Van Nostrand, New York (1967).
- (7) Zhang wenxiu, Elements of fuzzy mathematics, Xian, Jiaotong university (1984) (in chines).