FUZZY FLAT AND FAITHFULLY FLAT R-MODULES

M.M. Zahedi R.Ameri

Department of Mathematics, Kerman University

Kerman, Iran

Abstract: In this paper by considering the notion of fuzzy exact sequence of fuzzy R-modules, the concepts of F-left exact and F-right exact functors are defined. It is shown that two functors $Hom_R(\theta_A, -)$ and $Hom_R(-, \eta_B)$ are not F-left exact, while in ordinary algebra they are left exact. Also it is seen that the functor $\theta_A \otimes_R -$ is F-right exact. Finally some equivalent conditions are proved, and on the basis of which the fuzzy flat and faithfully flat R-modules are defined.

Keywords: Fuzzy R-module, Fuzzy Tensor Product and Fuzzy Exact Sequence.

1. Preliminaries

Permouth [3] defined the tensor product of fuzzy R-modules. Zahedi and Ameri [7] defined and studied fuzzy exact sequence of fuzzy R-modules. In this paper R is a ring with identity and each module involved is an unitary R-module. All definitions and notations follow the presentations Pan [6], Permouth [3] and Zahedi and Ameri [7], unless otherwise stated.

Definition 1.1 [7]. The sequence

$$\cdots \to \mu_{n_{A_{n-1}}} \xrightarrow{\tilde{f}_{n-1}} \mu_{n_{A_n}} \xrightarrow{\tilde{f}_n} \mu_{n+1_{A_{n+1}}} \to \cdots \tag{1}$$

of fuzzy R-module homomorphisms is called fuzzy exact when $im\tilde{f}_{n-1}=Ker\tilde{f}_n$, for all $n\in\mathcal{Z}$, where by $im\tilde{f}_{n-1}$ and $Ker\tilde{f}_n$ we mean $\mu|_{Kerf_n}$ and $\mu_n|_{Imf_{n-1}}$ respectively.

Example 1.2. Let $ilde{f}:\mu_M o \eta_N$ be a fuzzy homomorphism. Then the fuzzy sequence

$$\overline{0} \longrightarrow Ker \widetilde{f} \xrightarrow{\widetilde{i}} \mu_M \xrightarrow{\widetilde{f}} \eta_N \xrightarrow{\widetilde{\pi}} coker \widetilde{f} \longrightarrow \widetilde{0}$$

is exact, where i and π are the inclusion map and canonical epimorphism respectively and $coker \tilde{f} = \overline{\eta}_{(N/Imf)}$.

Definition 1.3 [7]. The fuzzy exact sequence

$$\overline{0} \to \mu_A \xrightarrow{\tilde{f}} \rho_B \xrightarrow{\tilde{g}} \eta_C \longrightarrow \overline{0}$$
 (2)

is said to be a fuzzy short exact sequence.

2. Main Results

Definition 2.1. (i) The covariant (contravariant) functor $T(S): R-fzmod \rightarrow fz - Ab$ is called F-left exact if for any fuzzy exact sequence $\overline{0} \rightarrow \mu'_{A'} \rightarrow \mu_A \rightarrow \mu''_{A''}$, $(\mu'_{A'} \rightarrow \mu_A \rightarrow \mu''_{A''} \rightarrow \overline{0})$, the sequence

$$0 \to T\mu'_{A'} \to T\mu_A \to T\mu''_{A''}$$

$$(0 \to S\mu_{A''}'' \to S\mu_A \to S\mu_{A'}')$$

be exact, where fz - Ab denotes the category of fuzzy Abelian groups.

(ii) The covariant functor $T: R-\text{fzmod} \to fz-Ab$ is called F-right exact if for any fuzzy exact sequence $\mu'_{A'} \to \mu_A \to \mu''_{A''} \to \overline{0}$, the sequence

$$T\mu'_{A'} \to T\mu_A \to T\mu''_{A''} \to \overline{0}$$

be exact.

Theorem 2.2. $Hom(\theta_A, -)$ and $Hom(-, \eta_B)$ are respectively covariant and contravariant functors from R-fzmod to fz - Ab, where θ_A, η_B are fuzzy R-modules, and

$$Hom_R(\theta_A, -) : \Gamma_B \longmapsto Hom_R(\theta_A, \Gamma_B)$$

$$Hom_R(-,\eta_B):\Gamma_A\longmapsto Hom_R(\Gamma_A,\eta_B).$$

Proof. By identifying the ordinary group G with the fuzzy subgroup χ_G , the proof is simple.

Remark 2.3. The following examples show that the covariant functor $Hom_R(\theta_M, -)$ and the contravariant functor $Hom_R(-, \eta_N)$ are not F-left exact, whenever the functors $Hom_R(M, -)$ and $Hom_R(-, N)$ are left exact in ordinary algebra. However Theorems 3.17 and 3.18 of [7] give necessary and sufficient conditions for F-exactness of the functors $Hom_R(\theta_M, -)$, $Hom_R(-, \eta_N)$.

Example 2.4 [7]. Let $M \neq < 0 >$ be an R-module. Define the fuzzy modules μ, η, ρ and θ as follows:

$$\mu = \chi_{\{0\}} \; , \; \eta = \chi_M \; , \; \theta(x) = \left\{ egin{array}{ll} 1 & if \; x = 0 \\ 1/3 & otherwise \end{array}
ight. \; , \;
ho(x) = \left\{ egin{array}{ll} 1 & if \; x = 0 \\ 1/2 & otherwise \end{array}
ight.$$

Now if f is the identity map and g is the zero map on M, then it is easy to see that the fuzzy sequence $\overline{0} \to \mu_M \xrightarrow{\tilde{f}} \rho_M \xrightarrow{\tilde{g}} \eta_M$ is exact, but the sequence

$$0 \to Hom_R(\theta_M, \mu_M) \xrightarrow{\tilde{f}_*} Hom_R(\theta_M, \rho_M) \xrightarrow{\tilde{g}_*} Hom_R(\theta_M, \eta_M)$$
 (3)

is not exact, because $\tilde{1}_M \in Ker\tilde{g}_*$ and there is no $\tilde{\varphi} \in Hom_R(\theta_M, \mu_M)$ such that $\tilde{f}_*\tilde{\varphi} = \tilde{1}_M$.

Example 2.5 [7]. Let $M \neq < 0 >$ be an R-module. Define the fuzzy modules

 μ, η, ρ and θ as follows:

$$\mu = \rho = \chi_{\{0\}} \; , \; \eta = \chi_M \; , \; \theta(x) = \left\{ egin{array}{ll} 1 & if \; \; x = 0 \\ 1/3 & otherwise. \end{array}
ight.$$

Now if f is the zero map and g is the identity map on M, then it is easy to check that the fuzzy sequence

$$\mu_M \xrightarrow{\tilde{f}} \rho_M \xrightarrow{\tilde{g}} \eta_M \longrightarrow \overline{0}$$

is exact. But the sequence

$$0 \to Hom_R(\eta_M, \theta_M) \xrightarrow{\tilde{g}^*} Hom_R(\rho_M, \theta_M) \xrightarrow{\tilde{f}^*} Hom_R(\mu_M, \theta_M)$$
 (4)

is not exact, because $Im\tilde{g}^* \neq Ker\tilde{f}^*$.

Notation: Let μ_M be a right and ν_N a left fuzzy R-modules. Then the tensor product of μ_M and ν_N is denoted by $(\mu \otimes \nu)_{M \otimes_R N}$.

Lemma 2.6. Let ν_N be an arbitrary fuzzy R-module. Then ν_N induces the following two covariant functors

$$(i) \qquad \qquad \nu_N \otimes_R -: R - \text{fzmod} \longrightarrow fz - Ab$$

$$\mu_M \longmapsto (\nu \otimes \mu)_{N \otimes_R M}$$

$$(ii) \qquad - \otimes_R \nu_N : R - \text{fzmod} \longrightarrow fz - Ab$$

$$\eta_M \longmapsto (\eta \otimes \nu)_{M \otimes_R N}$$

Proof. Easy.

Theorem 2.7. Let ν_N be an arbitrary fuzzy R-module. Then the functors $\nu_N \otimes_R - \text{and } - \otimes_R \nu_N$ are F-right exact.

Proof. We prove the theorem for $\nu_N \otimes_R -$. The proof for $-\otimes_R \nu_N$ is similar. Let the fuzzy sequence

$$\mu'_{M'} \xrightarrow{\tilde{f}} \mu_M \xrightarrow{\tilde{g}} \mu''_{M''} \longrightarrow \overline{0}$$
 (5)

be exact. We show that the sequence

$$(\nu \otimes \mu')_{N \otimes_R M'} \xrightarrow{\tilde{1} \otimes \tilde{f}} (\nu \otimes \mu)_{N \otimes_R M} \xrightarrow{\tilde{1} \otimes \tilde{g}} (\nu \otimes \mu'')_{N \otimes_R M''} \longrightarrow \overline{0}$$
 (6)

is exact. By [3] $\tilde{1} \otimes \tilde{f}$ and $\tilde{1} \otimes \tilde{g}$ are fuzzy homomorphisms. Since $1 \otimes g$ is onto, we conclude that $\tilde{1} \otimes \tilde{g}$ is an epimorphism [4]. Hence it is enough to show that $Im(\tilde{1} \otimes \tilde{f}) = Ker(\tilde{1} \otimes \tilde{g})$. Since the sequence (5) is fuzzy exact, by [7], the sequence $M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$ is also exact. Therefore the sequence

$$N \otimes_R M' \xrightarrow{1 \otimes f} N \otimes_R M \xrightarrow{1 \otimes g} N \otimes_R M'' \longrightarrow 0$$

is exact. Thus $Im(1 \otimes f) = Ker(1 \otimes g)$. Consequently

$$(\nu \otimes \mu)|_{Im(1 \otimes f)} = \nu \otimes \mu|_{Ker(1 \otimes g)}$$

Hence (6) is a fuzzy exact sequence.

Definition 2.8. If ν_N is a fuzzy R-module such that the functor $\nu_N \otimes_R$ — be F-left exact, then ν_N is said to be fuzzy flat.

Theorem 2.9. An R-module N is flat if and only if every fuzzy R-module ν_N is fuzzy flat.

Proof. Let N be a flat R-module and the sequence

$$\overline{0} \longrightarrow \mu'_{M'} \xrightarrow{\widetilde{f}} \mu_M \xrightarrow{\widetilde{g}} \mu''_{M''}$$

be fuzzy exact. Since N is flat, we can conclude that the sequence

$$0 \longrightarrow N \otimes_R M' \stackrel{1 \otimes f}{\longrightarrow} N \otimes_R M \stackrel{1 \otimes g}{\longrightarrow} N \otimes_R M''$$

is also exact. Thus the fuzzy homomorphism

$$\tilde{1} \otimes \tilde{f} : (\nu \otimes \mu')_{N \otimes_{R} M'} \longrightarrow (\nu \otimes \mu)_{N \otimes_{R} M}$$

is a fuzzy monomorphism [4]. Moreover

$$(\nu \otimes \mu)|_{Im1\otimes f} = (\nu \otimes \mu)|_{Ker1\otimes g}.$$

Thus the sequence

$$\overline{0} \longrightarrow (\nu \otimes \mu')_{N \otimes_R M'} \xrightarrow{\widetilde{1} \otimes \widetilde{f}} (\nu \otimes \mu)_{N \otimes_R M} \xrightarrow{\widetilde{1} \otimes \widetilde{g}} (\nu \otimes \mu'')_{N \otimes_R M''}$$

is fuzzy exact. That is ν_N is fuzzy flat. The proof of the converse is obvious.

Theorem 2.10. Let ν_N be a fuzzy R-module. Then the following conditions are equivalent:

- (i) ν_N is fuzzy flat.
- (ii) If $\overline{0} \to \mu'_{M'} \to \mu_M \to \mu''_{M''} \to \overline{0}$ is fuzzy exact sequence of fuzzy R-modules, then the sequence

$$\overline{0} \longrightarrow (\nu \otimes \mu')_{N \otimes_R M'} \longrightarrow (\nu \otimes \mu)_{N \otimes_R M} \longrightarrow (\nu \otimes \mu'')_{N \otimes_R M''} \longrightarrow \overline{0}$$

is fuzzy short exact.

(iii) If $\tilde{f}:\mu'_{M'} o \mu_M$ is a fuzzy R-module monomorphism, then

$$\tilde{1} \otimes \tilde{f}(\nu \otimes \mu')_{N \otimes_{\mathcal{P}M'}} \longrightarrow (\nu \otimes \mu)_{N \otimes_{\mathcal{P}M}}$$

is also fuzzy monomorphism.

(iv) If $\tilde{f}: \mu'_{M'} \to \mu_M$ is a fuzzy R-module monomorphism and $\mu_M, \mu'_{M'}$ are fuzzy finitely generated R-modules, then

$$\tilde{1} \otimes \tilde{f}(\nu \otimes \mu')_{N \otimes_R M'} \longrightarrow (\nu \otimes \mu)_{N \otimes_R M}$$

is a fuzzy monomorphism.

Proof. $(i) \rightarrow (ii)$ This follows from Theorem 2.7 and Definition 2.8.

(ii)
ightarrow (iii) Since $ilde{f}$ is a monomorphism, thus Example 1.2 shows that the sequence

$$\overline{0} \longrightarrow \mu'_{M'} \xrightarrow{\tilde{f}} \mu_{M} \xrightarrow{\tilde{\pi}} coker \tilde{f} \longrightarrow \overline{0}$$

is fuzzy short exact. So by hypothesis the sequence

$$\overline{0} \longrightarrow (\nu \otimes \mu')_{N \otimes_R M'} \xrightarrow{\widetilde{1} \otimes \widetilde{f}} (\nu \otimes \mu)_{N \otimes_R M} \xrightarrow{\widetilde{1} \otimes \widetilde{\pi}} (\nu \otimes \overline{\mu})_{N \otimes_R M/Imf} \longrightarrow \overline{0}$$

is exact. Hence $\tilde{1}\otimes\tilde{f}$ is a monomorphism.

- $(iii) \rightarrow (iv)$ This is obvious.
- $(iv) \to (i)$ Let $f: M' \to M$ be a monomorphism and M, M' be finitely generated. Then the fuzzy map $\tilde{f}: (\chi_0)_{M'} \to (\chi_0)_M$ is a fuzzy monomorphism. Thus by hypothesis and definition of finitely generated R-module [6] we have that

$$\tilde{1} \otimes \tilde{f} : (\nu \otimes (\chi_0))_{N \otimes_{\mathcal{P}} M'} \longrightarrow (\nu \otimes \chi_0)_{N \otimes M}$$

is a fuzzy monomorphism. Therefore by Theorem 3.7 of [4] $1 \otimes f : N \otimes_R M' \longrightarrow N \otimes_R M$ is 1-1. So N is a flat R-module [1, Proposition 2.19]. Hence by Theorem 2.9 ν_N is fuzzy flat.

Theorem 2.11. For any fuzzy R-module ν_M the following conditions are equivalent:

(i) The fuzzy sequence

$$\overline{0} \longrightarrow \mu'_{N'} \xrightarrow{\widetilde{f}} \mu_N \xrightarrow{\widetilde{g}} \mu''_{N''} \longrightarrow \overline{0}$$

of fuzzy R-module is exact if and only if the sequence

$$\overline{0} \longrightarrow (\nu \otimes \mu')_{M \otimes_R N'} \xrightarrow{\widetilde{1} \otimes \widetilde{f}} (\nu \otimes \mu)_{M \otimes_R N} \xrightarrow{\widetilde{1} \otimes \widetilde{g}} (\nu \otimes \mu'')_{M \otimes_R N''} \longrightarrow \overline{0}$$

is fuzzy exact.

- (ii) If ν_M is fuzzy flat, then for any fuzzy R-module $\mu_N, (\nu \otimes \mu)_{M \otimes_R N} = \overline{0}$, implies that $\nu_N = \overline{0}$.
- (iii) ν_M is fuzzy flat and for any fuzzy R-module homomorphism $\tilde{f}:\mu'_{N'}\to\mu_N,$ if the induced fuzzy map

$$\tilde{1} \otimes \tilde{f}(\nu \otimes \mu')_{M \otimes_R N'} \longrightarrow (\nu \otimes \mu)_{M \otimes_R N}$$

is the zero map, then $\tilde{f} = \tilde{0}$.

Proof. By considering Theorem 2 on page 24 of [2], the proof is obvious.

Definition 2.12. If the R-module ν_M , satisfies one of the conditions of Theorem 2.11, then ν_N is called fuzzy faithfully flat.

Corollary 2.13. ν_M is fuzzy faithfully flat if and only if M is faithfully flat.

References

- [1] M.F. Atiyah and I.G. Macdonald, Introduction to commutative algebra, (Addison-Wesley Series in Mathematics, 1969).
- [2] N.S. Gopalakrishnan, Commutative Algebra, (Oxonian Press, Pvt. Ltd. N-56 Connaught Circus, New Delhi, 1984).
- [3] Lopes Permouth, Lifting Morita Equivalence to categories of Fuzzy Modules,J. Information Sciences, 64(1992) 191-201.
- [4] S.R. Lopes Permouth and D.S. Malik, On categories of fuzzy modules, Information Sciences 52(1990) 211-220.
- [5] C.V. Negoita and D.A. Ralescu, Application of fuzzy subsets to system analysis, (Birkhauser Basel, 1975).
- [6] Fue Zheng PAN, Fuzzy finitely generated modules, Fuzzy Sets and Systems, 21 (1987) 105-115.
- [7] M.M. Zahedi and R. Ameri, Fuzzy exact sequence in category of fuzzy modules, J. Fuzzy Mathematics, to appear.