ENDOMORPHISM OF FUZZY POWER SET BASED ON LOWER CUT SET OF FUZZY SETS

Yuan Xue-hai

Department of Mathematics, Liaoning Normal University,

Dalian 116029, P. R. China

ABSTRACT

In this paper, a new kind of endomorphisms of fuzzy power set F(X) are discussed, which is based on lower cut set of fuzzy sets and is generalization of decomposition theorem in (1).

Keywords: Fuzzy Sets, Lower cut sets, Endomorphism, Decomposition theorem.

1. Lower cut sets and Decomposition theorem (1)

Let $F(X) = \{A \mid A: X \rightarrow [0,1] \text{ is a mapping}\}$. For $A \in F(X)$, $\lambda \in [0,1]$, $A^{\lambda} = \{x \mid x \in X, A(x) \leq \lambda\}$, $A^{\lambda} = \{x \mid x \in X, A(x) \leq \lambda\}$. A^{λ} , A^{λ} are called as λ -lower cut set and λ -strong lower cut set of fuzzy A respectively.

Let C be a subest of set $X, \lambda \in [0,1], \lambda C$ is defined as a fuzzy set of X and.

$$(\lambda C)(x) = \begin{cases} \lambda, & \text{if } x \in C \\ 1, & \text{if } x \notin C \end{cases}$$

then, We have decomposition theorems as following:

Theorem 1.1
$$A = \bigcap_{\lambda \in [0,1]} \lambda A^{\lambda}$$
, i. e. $A(x) = \bigwedge \{\lambda | \lambda \in [0,1], A(x) \leq \lambda\}$

Theorem 1. 2
$$A = \bigcap_{\lambda \in [0,1]} \lambda A^{\frac{1}{\lambda}}$$
, i. e. $A(x) = \bigwedge \{\lambda | \lambda \in [0,1], A(x) < \lambda \}$

Theorem 1. 3 Let $H:[0,1] \rightarrow \mathscr{P}(x)$. $\lambda \rightarrow H(\lambda)$ satisfy: $A^{\lambda} \subseteq H(\lambda) \subseteq A^{\lambda}$, then

$$(1)\lambda_1 < \lambda_2 \Rightarrow H(\lambda_1) \subseteq H(\lambda_2)$$

$$(2)A = \bigcap_{\lambda \in [0,1]} \lambda H(\lambda), i. e. A(x) = \bigwedge \{\lambda | \lambda \in [0,1], x \in H(\lambda)\}$$

$$(3)A^{\lambda} = \bigcap_{\alpha > \lambda} H(\alpha). \ A^{\lambda} = \bigcup_{\alpha < \lambda} H(\alpha)$$

In this paper, based on lower cut set of fuzzy set A, a new kind of endomorphisms of F(X) are discussed, which is a generalization of decomposition. theorem as above.

2. Endomorphism of F(X)

Let $\sigma: F(X) \to F(X)$ be a mapping, if (i) $\sigma(\bigvee_{t \in T} \lambda_t) = \bigvee_{t \in T} \sigma$ Definition 2. 1 $(\lambda_i), \forall \lambda_i \in [0,1]; (ii) \sigma(\bigwedge_{i \in T} \lambda_i) = \bigwedge_{i \in T} \sigma(\lambda_i), \forall \lambda_i \in [0,1]; (iii) \sigma(A)(x) = \sigma(A)(x)$ (x)), for any $A \in F(X)$, $x \in X$, then σ is called as a endomorphism of F(X).

Remark: For any $\lambda \in [0,1]$, Let $\lambda(x) = \lambda, \forall x \in X$, then $\lambda \in F(X)$. Clearrly, we have

Proposition Let σ be a endomorphism of F(X), then

$$(1)\sigma(\bigcup_{t\in T}A_t)=\bigcup_{t\in T}\sigma(A_t) \qquad (2)\sigma(\bigcap_{t\in T}A_t)=\bigcap_{t\in T}\sigma(A_t)$$

 $(1)\sigma(\bigcup_{t\in T} A_t) = \bigcup_{t\in T} \sigma(A_t)$ $(2)\sigma(\bigcap_{t\in T} A_t) = \bigcap_{t\in T} \sigma(A_t)$ Lemma 1 Let function $g:[0,1] \rightarrow [0,1]$ is right continuous, then $\bigcap_{k\in[0,1]} g$ $(\lambda)A^{\lambda} = \bigcap_{\lambda \in [0,1)} g(\lambda)A^{\lambda}$ (1)

Proof: when A(x)=1, we have $x \notin A^{\lambda}$ and $x \notin A^{\lambda}$ for any $\lambda < 1$, then $\bigcap_{\lambda \in [0,1)}$ $g(\lambda)A^{\lambda} = 1 = \bigcap_{\lambda \in [0,1)} g(\lambda)A^{\lambda}$

when A(x) < 1, we have $(\bigcap_{\lambda \in [0,1)} g(\lambda) A^{\frac{1}{\lambda}})(x) = \bigwedge_{\lambda \in [0,1]} g(\lambda) \leq g(A(x))$, it follows that $\bigwedge \{g(\lambda) | A(x) < \lambda \} = \bigwedge \{g(\lambda) | A(x) \leq \lambda \}$, Hence $\bigcap_{\lambda \in \{0,1\}} g(\lambda) A^{\lambda} = \{g(\lambda) | A(x) \leq \lambda \}$ $\bigcap_{\lambda\in\{0,1\}}g(\lambda)A^{\lambda}$

Corollary 1 Let mapping $H: [0,1] \rightarrow [0,1] \rightarrow \mathscr{P}(X)$ satisfy: $A^{\lambda} \subseteq H(\lambda)$ $\subseteq A^{\lambda}, \forall \lambda \in [0,1], then \bigcap_{\lambda \in [0,1)} g(\lambda)A^{\lambda} = \bigcap_{\lambda \in [0,1)} g(\lambda)H(\lambda) = \bigcap_{\lambda \in [0,1)} g(\lambda)A^{\lambda}$

Corollary 2 If $g(1) = \max\{g(\lambda) | \lambda \in [0,1]\}$, then $\bigcap_{\lambda \in [0,1]} g(\lambda) A^{\lambda} = \bigcap_{\lambda \in [0,1]} g(\lambda) A^{\lambda}$ $(\lambda)H(\lambda) = \bigcap_{\lambda \in [0,1]} g(\lambda)A^{\lambda}$

Remark: Let $\sigma_{\varepsilon}(A) = \bigcap_{\lambda \in [0,1]} g(\lambda) A^{\lambda}, \forall A \in F(X), \text{if } g(\lambda) = \lambda, \text{then } \sigma_{\varepsilon}(A) = \emptyset$ A, so $\sigma_{\varepsilon}(A) = \bigcap_{\lambda \in [0,1]} g(\lambda) A^{\lambda}$ is a generalization of decomposition theorem, we shall prove that σ_g is a endomorphism of F(X) when g is a continuous function.

Theorem 2.1 If g is a continuous function, then

$$(1)\sigma_{\mathbf{g}}(\bigcap_{t\in T} A_t) = \bigcap_{t\in T} \sigma_{\mathbf{g}}(A_t) \qquad (2)\sigma_{\mathbf{g}}(\bigcup_{t\in T} A_t) = \bigcup_{t\in T} \sigma_{\mathbf{g}}(A_t)$$

$$\operatorname{Proof}: (1)\sigma_{\mathbf{g}}(\bigcap_{t\in T} A_t) = \bigcap_{\lambda\in[0,1]} g(\lambda) \left(\bigcap_{t\in T} A_t\right)^{\lambda} = \left(\bigcap_{\lambda\in[0,1]} g(\lambda) \left(\bigcap_{t\in T} A_t\right)^{\lambda}\right) \cap (g(1))$$

$$(\bigcap_{i \in T} A_i) = (\bigcap_{\lambda \in [0,1)} g(\lambda) (\bigcap_{i \in T} A_i)^{\frac{\lambda}{i}}) \cap (g(1)X) = (\bigcap_{\lambda \in [0,1)} g(\lambda) (\bigcup_{i \in T} A_i^{\frac{\lambda}{i}})) \cap g(1) =$$

$$(\bigcap_{\lambda \in [0,1)} \bigcap_{i \in T} g(\lambda) A_i^{\frac{\lambda}{i}}) \cap g(1) = (\bigcap_{i \in T} (\bigcap_{\lambda \in [0,1)} g(\lambda) A_i^{\frac{\lambda}{i}})) \cap g(1) = (\bigcap_{i \in T} (\bigcap_{\lambda \in [0,1)} g(\lambda) A_i^{\frac{\lambda}{i}})) \cap g(1) = (\bigcap_{i \in T} (\bigcap_{\lambda \in [0,1)} g(\lambda) A_i^{\lambda})) \cap g(1) = (\bigcap_{i \in T} (\bigcap_{\lambda \in [0,1)} g(\lambda) A_i^{\lambda}) \cap g(1) = (\bigcap_{i \in T} (\bigcap_{\lambda \in [0,1)} g(\lambda) A_i^{\lambda}) \cap g(1) = (\bigcap_{i \in T} (\bigcap_{\lambda \in [0,1)} g(\lambda) A_i^{\lambda}) \cap g(1) = (\bigcap_{i \in T} (\bigcap_{\lambda \in [0,1)} g(\lambda) A_i^{\lambda}) \cap g(1) = (\bigcap_{i \in T} (\bigcap_{\lambda \in [0,1)} g(\lambda) A_i^{\lambda}) \cap g(1) = (\bigcap_{i \in T} (\bigcap_{\lambda \in [0,1)} g(\lambda) A_i^{\lambda}) \cap g(1) = (\bigcap_{\lambda \in [0,1)} g(\lambda) A_i^{\lambda}) \cap g(1) = (\bigcap_{\lambda \in [0,1)} g(\lambda) A_i^{\lambda}) \cap g(1) = (\bigcap_{\lambda \in [0,1]} g(\lambda) \cap g(\lambda) \cap$$

 $(2)\sigma_{g}(\bigcup_{t\in T}A_{t}) = \bigwedge_{\lambda\in[0,1]}\{g(\lambda) \mid \bigvee_{t\in T}A_{t}(x) \leqslant \lambda\}. \text{ Clearly, } \forall t\in T, \text{ we have } \bigwedge_{\lambda\in[0,1]}\{g(\lambda) \mid A_{t}(x) \leqslant \lambda\} \leqslant \bigwedge_{\lambda\in[0,1]}\{g(\lambda) \mid \bigvee_{t\in T}A_{t}(x) \leqslant \lambda, \text{ then }$

$$\bigvee_{t \in T} \left(\bigwedge_{\lambda \in [0,1]} \{ g(\lambda) \mid A_t(x) \leq \lambda \} \right) \leq \bigwedge_{\lambda \in [0,1]} \{ g(\lambda) \mid \bigvee_{t \in T} A_t(x) \leq \lambda \}$$
 (2)

If "<" is true in (2), then there is a $\alpha \in (0,1)$ such that

$$\bigvee_{t \in T} (\bigwedge_{\lambda \in [0,1]} \{g(\lambda) \mid A_t(x) \leq \lambda\} \leq \alpha \leq \bigwedge_{\lambda \in [0,1]} \{g(\lambda) \mid \bigvee_{t \in T} A_t(x) \leq \lambda\} \}$$
(3)

then, $\bigwedge_{\lambda \in [0,1]} \{g(\lambda) \mid A_t(x) \leq \lambda\} < \alpha$, for each $t \in T$, it follows that $\forall t \in T$, $\exists \lambda_t \in [0,1]$ Such that $A_t(x) \leq \lambda_t$ and $g(\lambda_t) < \alpha$, then $\bigvee_{t \in T} A_t(x) \leq \bigvee_{t \in T} \lambda_t = \beta$. Let $\{\lambda_{tn}\} \subseteq \{\lambda_t \mid t \in T\}$ and $\lim_{n \to \infty} \lambda_t = \beta$, then $g(\beta) = \lim_{n \to \infty} g(\lambda_{tn}) \leq \alpha$ and $\bigwedge_{\lambda \in (0,1)} \{g(\lambda) \mid \bigvee_{t \in T} A_t(x) \leq \lambda\} \leq g(\beta) \leq \alpha$. This contradicts with (3). Hence "=" is true in (2), i. e. $, \sigma_g(\bigcup_{t \in T} A_t) = \bigcup_{t \in T} \sigma_g(A_t)$

Lemma 2 Let $g:[0,1] \rightarrow [0,1]$ be a continuous function, if $f(\alpha) = \bigwedge_{i \geqslant a} g_{i}$. (λ), $\forall \alpha \in I$, then

- (i)f is a continuous and monotone function
 - $(ii)\sigma_{\mathbf{g}} = \sigma_f$
 - (iii) $\forall \lambda \in I, \sigma_f(\lambda) = f(\lambda)$

Theorem 2. 2 Let σ is a endomorphism of F(X), then there enists an unique continuous function $g:[0,1] \rightarrow [0,1]$ such that $\sigma = \sigma_g$.

Proof: Let $g(\lambda) = \sigma(\lambda)$, $\forall \lambda \in I$, then one can easily prove that $\sigma = \sigma_g$ and g is unique.

Theorem 2.3 Let g be continuous, then σ_g is surjective if and only if (i) g(1)=1, (ii) $g(\alpha)=0$ for some one $\alpha \in [0,1]$

Proof: " ▷ "Clearly

" \Diamond " Let f is a continuous and monotone increasing function from [0,1] to [0,1], and satisfy: $\sigma_f = \sigma_f$, we shall prove that σ_f is surjective.

Let $H(\lambda) = A^{f(\lambda)}$ for any $\lambda \in [0,1]$ and $\beta = \bigcap_{\lambda \in [0,1]} \lambda H(\lambda)$, then $B^{\lambda} \subseteq H(\lambda) \subseteq B^{\lambda}$ and

$$\bigcap_{\lambda \in [0,1]} f(\lambda) B^{\frac{\lambda}{2}} \subseteq \bigcap_{\lambda \in [0,1]} f(\lambda) H(\lambda) \subseteq \bigcap_{\lambda \in [0,1]} f(\lambda) B^{\lambda} = \sigma_f(B)$$
Since $g(1) = \bigwedge_{\lambda \ge 1} g(\lambda) = \sigma_g(1) = \sigma_f(1) = f(1)$, so $f(1) = 1$ and it follows

that $\sigma_f(B) = \bigcap_{\lambda \in [0,1]} f(\lambda) B^{\lambda}$ and $\sigma_f(B) = \bigcap_{\lambda \in [0,1]} f(\lambda) B^{f(\lambda)}$. By $f(0) = \bigwedge_{\lambda \geqslant 0} f(\lambda) = \sigma_f(0) = \sigma_g(0) = \bigwedge_{\lambda \geqslant 0} g(\lambda) = 0$, we have $\{f(\lambda) \mid \lambda \in [0, 1]\} = [0,1]$. It follows that $\sigma_f(B) = \bigcap_{\lambda \in [0,1]} f(\lambda) A^{f(\lambda)} = \bigcap_{\lambda \in [0,1]} \lambda A^{\lambda} = A$, i. e. σ_f is surjective.

Theorem 2.4 Let g be a continuous function from [0,1] to [0,1], then g is a monmorphism if and only if g satisfies: $\lambda_1 < \lambda_2 \Rightarrow g(\lambda_1) < g(\lambda_2)$

References

- 1. CHEN TUYUN, BUSEFAL, NO 63 (1995) 46-48
- 2. Liu Wenbin, Journal of Engineering Mathematics, Vol. 6, No. 1 (1989)12-16
- 3. W. B. Liu, Fuzzy Systems and Mathematics, 3(1989)16-23.
- 4. Dubios, P. and Prade, H., Fuzzy Sets and Systems, Academic Press, New York, 1980
- 5. Luo Chengzhong, Introduction to fuzzy sets, Beijing Normal University Press, 1989 (in chinese)