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ANOTHER PROOF OF FUZZY POSYNOMIAL
GEOMETRIC PROGRAMMING DUAL THEOREM -

Cao Bing —yuan
(Changsha Univensity of Electric Power, 410077, P, R. CHINA)

Abstract Based on the theorem of type fuzzy Kuhn—Tucker of fuzzy convex progrm —
ming, a dual theorem is obtained for fuzzy posynomial geometric programming. Another proof
i given in this paper before the algorithm is obtained for a dual programming.
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Let a prime fuzzy posynomial geometric programming be
min _@(x),
8t, Ou (x)sl, (m=1, 2,++, M) (1)
x>0 '
and a nonnegative T —vector be given tallying wlth
Boryy **" 18y "'Bm )" 20, Let

_M"

=1 m=0, 1,0, M), 8=(Bgp v0e,

DmekX) \e o, A _’. . - .
=3 (G2 = (g arymeg flad @
A
where _’l( = =) r,,,,.—.=l Ymin By
Ifg(x) is used instead of g_(x)( 0,1,e+,M), then a single fuzzy goomeiric
progmmmmg is obtained as follows
(R) min gy(x)
st. g.(X)S 1, (m=1, 2,-, M)
x;0
while the dual form of (1) is
ik dw)
st. I'"'w =0, a, B €0, 1] 3)
w=z0 :

where d (a))=(a,,/woo) o h (Cm a.,,/coo') ""” h (c.,a,,,/w.., ) o, o,

Definition 1 M, and M f, denote the construint least upper and greatest lower bounds of
(1) and (3) respectwely, i.e. :
=inf g,(x) M,=sup d(w)

4 1
s.t. gg(x)s 1 (m=1,+-, M), s.t. mooz:l, 2, lo:» Wy =Wy (”:1.0.0 . N)'
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Lemma 1 If for continuous nondecreasing functions (CMNF) B,cand ¥ with g(x*)=
4 (x*),then x* and @* must be an optimal solution of (1) and (3) respectively, and for any
fuzzy feasible solution x in 3] : we have

M
o(x')ﬂ I'I @)™ —ﬂ @2 gatw )

Proof For any fuzzy feasible solution x of (1), from Lemma 4.1 in[2], we have
9(x)2 d (@*)=g,(x*).

Therefore x* must be a fuzzy optimal solution of (1). We can prove in the similar way
that x* and * must tally with
0= { 2B, =0, =L ),
" 0noUndX)y (M#O; 1=1,, T),

Therefore (gy(x*)@2; )= (o.x* ) @4, =(wh, v...(x‘)) ~(m#0), from w1, wo have

M

a1 1T 2, =l w2011 1 @ ==

u03l~

o Tm 1,

. _n ((D. )m_.n rl C""'ﬁ X, .E"}_:. 1"'."(FTCI) =i Zz'mw,,,),

"= 0¢=l~ n= ~ m=0 ¢}

and from orthogonality condition, Eg. (4) is know to be true .
Lemma 2 For a CMNF B, ¢ and y, when (1) and (3) arc both fuzzy consistent, thero
must be

0<M,,< M,,< oo |
Proof Since (3) is fuzzy conslstent, M >0, and (1) fuzzy consistent, M,.< on
a.,(x)>a.,(x)ﬂ(a.(x)r-> d(w). M

Therefore, the lemma holds. ‘ '

Theorem 1 Let B,c and ¥ be a CMNF. If x is fuzzy feasible solution of (1), it must
be that of a single posynomial fuzzy geometric programming (P) If (1) s fuzzy consistent, so
is (P,). Again M M,, here MJ and M, denote the constrained greatest lower bound of (1)
and (P ) respecuvcly Then, the dual form of (P) is

D) max (a/ /@, )™ n (¢, Gn/o. )""
- o LA
st wg=1, ¥ w,=wg, ¥o is an index of go(x).
o 2 Eo
ZI 7,.0’.:0’ (n=l9'" vN)’ - 9 ﬁ ¢ [0, l]-
w2 0.

Proof 1f we use g, (x) instead of g_(x) (m=0, 1, >, M), then (1) is turncd into

~

(R). Owing 1o ( Z v, )" >n(v [0.)" @ with ©,/0,=s,,, we usc &,, as welght vector,

from
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== 1100 om0 5, [ 505 < B0,
Obviously, g.(x)< g_,',(x), such that a fuzzy feasible solution is that of (f._ ).

mn &1 15 max (1~ a)/@} )T [( 22418, @/ 0)"

~nl

(B)<=> st. 2, ﬂxb <l<=> st. 0, =1, ’70 BYa, =@}, «, f € (o, l]@(ﬁ)

~ .l

Mt

x>0 . B)o,=0, o 20(n=1, "'.N)
where @ =(Dyy @,y @, )Tis (m+l) dimension dual parameter veotor,
Theorem 2 Let B,, B ! and T y,,' be continuous and strictly monotonous, If

(P) is fuzzy consistent thh M >0 then there must exist dual feasible solution w” such that
woight vector &,
B @ =@ (m=0, 1, , M; t=1, 2,0+, T) ()
with M[, =i(w ).
Conversely, if dual fuzzy feasible solution @’ makes (5) hold, Mﬁ>0 must oxist,
Proof Owing to (I:.) <>

max (1 —a) max (1—«)
N -
s.t. B,(c‘;'(ﬁ)qx%-“”)w, x>0, <> s-t-c‘;'(ﬁ)n.;'(a)ﬁx?““’«. x>0, (F)
~ L ~ ~ n=l
a, p €0, 1], m=0, 1, M , BC[0, 1], m=0, l,vee \ M

Lelown max (1—a)
N
s.t. ;;T,;'(p) z,<log(c, B,'@)
(m=0, 1, , M), a, B €[0, 1],
If Let M5 >0 as the proof in Theorem 1.7.2 in[3], then its linear programming (R) has

the greatest lower bound logMj; , hence, from dual theory of an ordinary lincar
programming, a linear one corresponding to (D):
M —~

max{ @4 log(1 — a)+~§) @, log Eil(ﬁ)i;l(a)}

s.t. @ =1, Ty (B) @] =1 ©
M
LT B)Ba=0, o, B0, 1], (n=1,2,+,N)

has the greatest value logM,,. Moreover (D,) has fuzzy biggest value M,. ,Now let @* boan
optimal solution of (D) and (6), then

Mz, =((1—a)/8y )" ﬂl'l ((BIB,'@)/ 7, )™

and from

Ta 1,
B =Y [ @ Tw=BY (Bl Bl= ), B, =), 8.,8.=0; M
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_M _ —
Therefore My, =((1=a)@% / 33)*]] [1 @)BIB. @) @2,/ 0% )™ =d(5*) @®)
Since @* is a dual feasible solution of (D,), and from Eq. (2) and (7), we have

M &

Y Y niB@L =X Y0058, = ). 1. B)a, =0,

mo0 =l ~ .
Again since @’ >0, & >0, then ®* >0 with ®¥, =, =1. Honce @* I certainly a
feasible solution of (D,), moreover w* is a fuzzy feasible one of (3).
Conversely, let @* be a dual feasible solution which makes (7) hold, and deflne @4 =
@my (M=0, 1+, M), we have ®{=1 and &/ > 0 with
M M T M T
Suwa: 5 5 nene -5 F nwer.
Therefore, &’ is a feasible solution of (D) from Theorem 1.7.2 in [3], and M, >0.
Since (F) consistence <—> (B)) consistence <—> (D,) consistence, While
(7) <> E(E;: a’:o )=_§(5:, )v i'c- aulm:o =m:u
®) <= B(M;)=B@(%)),ie. M,=d(o"),
(m=0, 1,+, M;t=1, 2,-,T,),
Mz >0 <= M, >0.
Therefore, the theorem holds. '
Theorem 3 Suppose (1) is fuzzy super consistent with & mininal point x*, when By c
and y are continuous and strictly monotonous, x* is a minimal one of single posynomia!
fuzzy~geometric programming (5 ) corresponding to the weight

&= Un (X)) M=0, 1,2+, M; t=1, 2,0+, T,) : )
and M, =M, ~
Proof Because of th;t and according to
max(l —«) . .
T N
M <= st leBB @ ]x <1 (10)

x>0, a, B € [09 1] (m=0, 1, , M)
we know super consistence (10) has a minimal point x*. And from the knowledge of Theorem
1.7.3 in [3], a minimal one X* exists in single posynomial geometric programming (%)
corresponding to weight &, =1, (x*)/g, (X*) (m=0, 1,*+, M; t=1, 2,0, T.), and Mz, =M3,
such that
Emi=Vm .(X")/ﬁ.(x*) ’ Mﬁ=M£-

Hence the theorem is true.

Theorem 4 Suppose (1) is a fuzzy super consistence with a fuzzy optimal solution x*,
then there must exist Lagrange multiplier u*=(u*, puf,+, u%)" 2 0 with continuous and
strictly nondecreasing functions B, ¢ and 7, such that

M
Va(x*)+ L 12 Vg, (x*)=0



47

while @ * defined by
. ={gy,(x‘)/gix') (m=1, 2, M)
" Lo () gx*) (m#0, 1=1, 2,0, T,)
is a dual fuzzy optimal solution of (3). And
G(x")=d@?).

Proof First, “from Eq. (9), and the knowledge of Theorem 3, a minimal point
corresponding to (P,) is x* with a minimal value being Fo(x*)=g,(x*)>0; but flrom Theorem
2, J: o* tallyingﬁ\;vith (5) , such that - -

d(@*)=7,(*)=go(x*).
From Theorem 1 we know, " is a fuzzy optimal solution of (3).
Lastly, from Eq. (5) and (9), then
w8, =8%,= 1, (Mwuh /g.6")
when m= 0 w?, _vo,(x"‘)/go(x“') owmg to w)=1; when m#0, owing to

mo—Z o) =Ky Zv...(x"‘)/mlx") =2 6., OM)/ ) == from(1D, u3 /gd*),

Hence
o}, —v...,(X"')#“ /a..(X“')ao(x"‘) [ ..,(x“')/ao(x‘)
Suming up, we have
. {'Lm(x")/g,(x*), (m=0;t=1,*,T,),
B0 (%) go(:*),  (m#05t=1,e,T).
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