ANOTHER PROOF OF FUZZY POSYNOMIAL GEOMETRIC PROGRAMMING DUAL THEOREM

Cao Bing-yuan

(Changaha University of Electric Power, 410077, P. R. CHINA)

Abstract Based on the theorem of type fuzzy Kuhn-Tucker of fuzzy convex program—ming, a dual theorem is obtained for fuzzy posynomial geometric programming. Another proof is given in this paper before the algorithm is obtained for a dual programming.

Keywords Fuzzy posynomial. Geometric programming, Dual theorem, Proof.

Let a prime fuzzy posynomial geometric programming be

$$\min_{\mathbf{g_0}} \underbrace{g_0(x)}_{\mathbf{g_m}},$$
s.t. $\underbrace{g_m(x)}_{\mathbf{x}>0} \lesssim 1$, $(m=1, 2, \dots, M)$

$$\underbrace{x>0}_{\mathbf{r}}$$
(1)

and a nonnegative T-vector be given tallying with $\sum_{i=1}^{T_n} a_{m_i} = 1$ $(m = 0, 1, \dots, M)$, $a = (a_{01}, \dots, a_{0T_0}, \dots, a_{M1}, \dots, a_{M1}, \dots, a_{M1})^T \ge 0$. Let

$$\overline{g}_{m}(x) = \sum_{t=1}^{T} \left(\frac{v_{mt}(x)}{\varepsilon_{mt}} \right)^{\varepsilon_{mt}} = \sum_{t=1}^{T} \left(\frac{c_{mt}}{\widetilde{\varepsilon_{mt}}} \prod_{n=1}^{N} x_{n}^{\frac{\gamma_{n+n}}{\varepsilon_{n}}} \right)^{\varepsilon_{mt}} = \overline{c_{m}} \prod_{n=1}^{N} x_{n}^{\frac{\gamma_{n}}{\varepsilon_{n}}}$$
(2)

where

$$\overline{c}_{m} = \prod_{i=1}^{T_{n}} \left(\frac{c_{mi}}{\widetilde{\epsilon}_{mi}} \right)^{s_{mi}}, \quad \overline{r}_{mn} = \sum_{i=1}^{T_{n}} \gamma_{min} \epsilon_{mi}.$$

If $\overline{g_m}(x)$ is used instead of $g_m(x)$ (m=0, 1, ..., M), then a single fuzzy geometric programming is obtained as follows

(
$$\underline{P_6}$$
) min $\overline{g_0}(x)$
s.t. $\widetilde{g_m}(x) \le 1$, $(m=1, 2, \dots, M)$
 $x > 0$

while the dual form of (1) is

$$\widetilde{\max} \ d(\omega)
\text{s.t. } \widetilde{\Gamma}^T \omega = 0, \ \alpha, \ \beta \in [0, 1]
\widetilde{\omega} \ge 0$$
(3)

where
$$\underline{d}(\omega) = (\underline{a_0}/\omega_{00})^{\omega_{00}} \prod_{i=1}^{T_0} (\underline{c_{0i}} \ \underline{a_{0i}}/\omega_{0i})^{\omega_{0i}} \prod_{m=1}^{M} \prod_{i=1}^{T_n} (\underline{c_{mi}} \ \underline{a_{mi}}/\omega_{mi})^{\omega_{mi}} \ \underline{\omega_{mi0}}^{\omega_{mi0}}$$

Definition 1 M_P and M_D denote the constraint least upper and greatest lower bounds of (1) and (3) respectively, i.e.

$$M_{\underline{P}} = \inf \underbrace{g_0(x)}_{\text{s.t.}} \underbrace{g_m(x) \leqslant 1}_{\text{one}} (m = 1, \dots, M), \qquad \text{s.t. } \omega_{00} = 1, \sum_{i=1}^{T_0} \underbrace{\gamma_{0in}}_{\text{on}} \omega_{0i} = \omega_{00} (n = 1, \dots, N),$$

Lemma 1 If for continuous nondecreasing functions (CMNF) \underline{B} , \underline{c} and $\underline{\gamma}$ with $\underline{g_0}(x^*) = \underline{d}(x^*)$, then x^* and ω^* must be an optimal solution of (1) and (3) respectively, and for any fuzzy feasible solution x in [3], we have

$$g_{0}(x^{*})\prod_{m=0}^{M}\prod_{i=1}^{T_{n}}(\omega_{m_{i}}^{*})^{\omega_{n}}=\prod_{m=1}^{M}(\omega_{m_{0}}^{*})^{\omega_{n}}\prod_{m=0}^{M}C_{m_{i}}^{m_{n}}$$
(4)

Proof For any fuzzy feasible solution x of (1), from Lemma 4.1 in [2], we have $g_0(x) \ge d(\omega^*) = g_0(x^*)$.

Therefore x^* must be a fuzzy optimal solution of (1). We can prove in the similar way that x^* and ω^* must tally with

$$\omega_{mi} = \left\{ \frac{v_{0i}(x)/g_{0}(x), (m=0, t=1, \dots, T_{0}),}{\widetilde{\omega}_{m0}v_{mi}(x), (m\neq 0; t=1, \dots, T_{m}).} \right.$$

Therefore $(g_0(x^*)\omega_{\sigma_1}^*)=(v_{\sigma}(x^*))^{\omega_{01}}, (\omega_{m_1}^*)^{\omega_{m_1}}=(\omega_{m_0}^*v_{m_1}(x^*))^{\omega_{m_1}}(m\neq 0), \text{ from } \omega_{00}=1, \text{ we have } (m\neq 0)$

$$\underbrace{g_0(x^*)\prod_{m=0}^{M}\prod_{i=1}^{T_n}(\omega_{mi}^*)^{\omega_{mi}}}_{M} = \prod_{m=1}^{M}(\omega_{m0}^*)^{\omega_{ni}}\prod_{m=0}^{M}\prod_{i=1}^{T_n}(v_m(x^*))^{\omega_{ni}}$$

$$= \prod_{m=1}^{M} (\omega_{m0}^{*})^{\omega_{n0}} \prod_{m=0}^{M} \prod_{i=1}^{T_{n}} c_{mi}^{\omega_{ni}} \prod_{n=1}^{N} x_{n}^{\sum_{m=0}^{N} \sum_{i=1}^{T_{n}} \gamma_{ni}\omega_{ni}} (\underline{\Gamma}^{T} \omega = \sum_{m=0}^{M} \sum_{i=1}^{T_{n}} \gamma_{min} \omega_{mi}),$$

and from orthogonality condition, Eg. (4) is know to be true.

Lemma 2 For a CMNF B, c and y, when (1) and (3) are both fuzzy consistent, there must be $0 < M_p \le M_p < \infty$.

Proof Since (3) is fuzzy consistent, $M_{\underline{p}} > 0$, and (1) fuzzy consistent, $M_{\underline{p}} < \infty$ $g_{\underline{0}}(x) \ge g_{\underline{0}}(x) \prod_{m=1}^{M} (g_{\underline{m}}(x))^{\omega_{m}} \ge \underline{d}(\omega).^{[1]} [2]$

Therefore, the lemma holds.

Theorem 1 Let B, C and Y be a CMNF. If X is fuzzy feasible solution of (1), it must be that of a single posynomial fuzzy geometric programming (P_t) . If (1) is fuzzy consistent, so is (P_t) . Again $M_{P_t} \leq M_{P_t}$, here M_{P_t} and M_{P_t} denote the constrained greatest lower bound of (1) and (P_t) respectively. Then, the dual form of (P_t) is $(D_t) = \max (a_0'/\omega_0')^{\omega_0'} \prod_{m=0}^{M} (c_m a_m/\omega_m)^{\omega_m}$

$$(D_{s}) \qquad \max \left(\frac{a_{0}'}{\omega_{0}'} \right)^{\omega_{0}'} \prod_{m=0}^{\infty} \left(\frac{c_{m}}{m} \frac{a_{m}}{\omega_{m}} \right)^{\omega_{m}}$$
s.t. $\omega_{0}' = 1$, $\overline{\gamma_{0}}^{*} \underbrace{\omega_{0}} = \omega_{0}'$, $\overline{\gamma_{0}}^{*}$ is an index of $\underline{y_{0}}(x)$.
$$\sum_{m=1}^{M} \overline{\gamma_{m}} \omega_{m} = 0$$
, $(n=1, \dots, N)$, $\alpha, \beta \in [0, 1]$, $\omega \ge 0$.

Proof 1f we use $\overline{g_m}(x)$ instead of $\underline{g_m}(x)$ $(m=0, 1, \dots, M)$, then (1) is turned into $(\underline{P_s})$. Owing to $(\sum_{t=1}^T \underline{v_t})^{\epsilon_t} \ge \prod_{t=1}^T (\underline{v_t}/\omega_t)^{\omega_t} \omega_0^{\omega_0}$ with $\omega_t/\omega_0 = \varepsilon_{mt}$, we use ε_{m_t} as weight vector, from

$$\Longrightarrow \prod_{t=1}^{T_n} (\underline{v}_{mt}(x)/\delta_{mt}\omega_0)^{\epsilon_{nt}} = \prod_{t=1}^{T_n} (\underline{v}_{mt}(x)/\delta_{mt})^{\epsilon_{nt}} = \overline{c}_m \prod_{n=1}^N X_n^{\overline{y}_{nt}} \leqslant \sum_{t=1}^{T_n} \underline{v}_{mt}(x).$$

Obviously, $\overline{g}_m(x) \leq g_m(x)$, such that a fuzzy feasible solution is that of (P_n) .

$$\widetilde{\min} \quad \overline{c}_{0} \prod_{n=1}^{N} x_{n}^{\overline{c}_{0}} \cdot \qquad \max \quad ((1-a)/\overline{\omega}_{0}')^{\overline{\omega}_{0}'} \prod_{m=0}^{N} (c_{m}^{-1}(\beta)B_{m}^{-1}(a)/\overline{\omega}_{m})^{\overline{\omega}_{n}}$$

$$(\underline{P}) \iff \text{s.t.} \quad \overline{c}_{m} \prod_{n=1}^{N} x_{n}^{\overline{c}_{n}} \leq 1 \iff \text{s.t.} \quad \overline{\omega}_{0}' = 1, \ \overline{y}_{0}^{*-1}(\beta)\overline{\omega}_{0} = \overline{\omega}_{0}', \ \alpha, \beta \in [0, 1] \iff (\overline{D}_{0})$$

$$x>0 \qquad \qquad \sum_{m=0}^{M} \overline{y}_{mm}^{-1}(\beta)\overline{\omega}_{m} = 0, \ \overline{\omega} \geqslant 0 \ (n=1, \dots, N)$$

where $\overline{\omega} = (\overline{\omega}_0, \overline{\omega}_1, \dots, \overline{\omega}_M)^T$ is (m+1)-dimension dual parameter vector.

Theorem 2 Let B_m , B_m^{-1} ; c_m , c_m^{-1} and γ_m , γ_m^{-1} be continuous and strictly monotonous. If (P_*) is fuzzy consistent with $M_{\widetilde{R}} > 0$, then there must exist dual feasible solution ω' , such that weight vector ε ,

$$\varepsilon_{mt}\omega'_{mo} = \omega'_{mt} \ (m=0, 1, \dots, M; \ t=1, 2, \dots, T_m)$$
 with $M_{P_0} = d(\omega')$. (5)

Conversely, if dual fuzzy feasible solution ω' makes (5) hold, $M_{2}>0$ must exist.

Proof Owing to $(P_i) \iff$

$$\max (1-\alpha) \qquad \max (1-\alpha)$$
s.t. $B_{m}(\overline{c_{m}}^{1}(\beta)) \prod_{n=1}^{N} x_{n}^{\overline{x_{n}^{-1}(\beta)}}) \geqslant \alpha, x > 0, \iff \text{s.t. } \overline{c_{m}^{-1}(\beta)} B_{m}^{-1}(\alpha) \prod_{n=1}^{N} x_{n}^{\overline{x_{n}^{-1}(\beta)}} \leqslant 1, x > 0, \quad (\overline{P_{i}})$

$$\alpha, \beta \in [0, 1], m = 0, 1, \dots, M$$

$$\alpha, \beta \in [0, 1], m = 0, 1, \dots, M$$

$$\sum_{n=1}^{N} \overline{y_{m}^{-1}(\beta)} z_{n} \leqslant \log(\overline{c_{m}^{-1}} B_{m}^{-1}(\alpha))$$

$$(m = 0, 1, \dots, M), \alpha, \beta \in [0, 1].$$

If Let $M_{\overline{P}_4} > 0$ as the proof in Theorem 1.7.2 in [3], then its linear programming (\overline{R}) has the greatest lower bound $\log M_{\overline{P}_4}$, hence, from dual theory of an ordinary linear programming, a linear one corresponding to (D_4) :

$$\max \{ \overline{\omega}'_0 \log(1-\alpha) + \sum_{m=0}^{M} \overline{\omega}_m \log \overline{c}_m^{-1}(\beta) B_m^{-1}(\alpha) \}$$
s.t. $\overline{\omega}'_0 = 1$, $\overline{\gamma}_0^{-1}(\beta) \overline{\omega}'_0 = 1$

$$\sum_{m=0}^{M} \overline{\gamma}_m^{-1}(\beta) \overline{\omega}_m = 0$$
, α , $\beta \in [0, 1]$, $(n=1, 2, \dots, N)$

has the greatest value $\log M_{P_0}$. Moreover (\overline{D}_i) has fuzzy biggest value M_{P_0} , Now let \overline{w} *' be an optimal solution of (\overline{D}_i) and (6), then

$$M_{\overline{P}_{\delta}} = ((1-\alpha)/\overline{\varepsilon}_{0t})^{\overline{\varepsilon}_{0t}} \overline{\omega}_{\delta} \prod_{m=0}^{M} \prod_{t=1}^{T_{m}} (c_{mt}^{-1}(\beta)B_{m}^{-1}(\alpha)/\overline{\varepsilon}_{mt})^{\overline{\varepsilon}_{nt}} \overline{\omega}_{\delta}$$

and from

$$\overline{\varepsilon}_{0t} = \overline{\omega}_{0t}^{*\prime} / \overline{\omega}_{0}^{\prime}, \quad \overline{\varepsilon}_{mt} = \overline{\omega}_{mt}^{*} / \overline{\omega}_{m}^{\prime}, \quad \overline{\omega}_{m0}^{*} = \sum_{t=1}^{T_{n}} \overline{\omega}_{mt}^{*} = \sum_{t=1}^{T_{n}} \overline{\varepsilon}_{mt} \overline{\omega}_{m}^{\prime} = \overline{\omega}_{m}^{\prime}$$

$$(7)$$

Therefore
$$M_{\overline{P}_a} = ((1-\alpha)\overline{\omega}_{00}^* / \overline{\omega}_{0l}')^{\overline{\omega}_{0l}^*} \prod_{m=0}^{1} \prod_{l=1}^{2} (c_{ml}^{-1}(\beta)B_m^{-1}(\alpha)\overline{\omega}_{m0}^* / \overline{\omega}_{ml}^*)^{\overline{\omega}_{ml}^*} = d(\overline{\omega}^*)$$
 (8)

Since $\overline{\omega}^*$ is a dual feasible solution of (\overline{D}_i) , and from Eq. (2) and (7), we have

$$\sum_{m=0}^{M}\sum_{t=1}^{T_{m}} \underbrace{\gamma_{mtn}^{-1}(\beta)}_{mtn} \overline{\omega}_{mt}^{*} = \sum_{m=0}^{M}\sum_{t=1}^{T_{m}} \underbrace{\gamma_{mtn}^{-1}(\beta)}_{mtn} \overline{\omega}_{m}' = \sum_{m=0}^{M} \underbrace{\gamma_{mt}^{-1}(\beta)}_{mt} \overline{\omega}_{m}' = 0.$$

Again since $\overline{\omega}' \ge 0$, $\overline{\varepsilon} \ge 0$, then $\overline{\omega}^* \ge 0$ with $\overline{\omega}_{00}^* = \overline{\omega}_0' = 1$. Hence $\overline{\omega}^*$ is certainly a feasible solution of $(\overline{D}_{\varepsilon})$, moreover ω^* is a fuzzy feasible one of (3),

Conversely, let $\overline{\omega}^*$ be a dual feasible solution which makes (7) hold, and define $\overline{\omega}'_m = \overline{\omega}^*_{m0}$ $(m=0, 1, \dots, M)$, we have $\overline{\omega}'_0 = 1$ and $\overline{\omega}'_0 \ge 0$ with

$$\sum_{m=0}^{M} \gamma_{mn}^{-1}(\beta) \ \overline{\omega}_{m'} = \sum_{m=0}^{M} \sum_{i=1}^{T_{n}} \ \gamma_{min}^{-1}(\beta) \ \overline{\varepsilon}_{mi} \ \overline{\omega}_{m'} = \sum_{m=0}^{M} \sum_{i=1}^{T_{n}} \ \gamma_{mi}^{-1}(\beta) \ \overline{\omega}_{mi}^{*}$$

Therefore, $\overline{\omega}'$ is a feasible solution of (D) from Theorem 1.7.2 in [3], and $M_{P} > 0$.

Since $(\underline{P}_{\bullet})$ consistence (\overline{D}_{\bullet}) consistence. While

$$(7) \iff B(\overline{\varepsilon}_{m_i} \ \overline{\omega}_{m_0}^*) = B(\overline{\omega}_{m_i}^*), \text{ i.e. } \varepsilon_{m_i} \omega_{m_0}^* = \omega_{m_i}^*,$$

(8)
$$\iff \widetilde{B}(M_{\overline{P}}) = B(d(\widetilde{\omega}_{m_t}^*)), \text{ i.e. } M_{\overline{P}} = \underline{d}(\omega^*),$$

 $(m = 0, 1, \dots, M; t = 1, 2, \dots, T_m).$

$$M_{\bar{l}_{\ell}} > 0 \iff M_{l_{\ell}} > 0.$$

Therefore, the theorem holds.

Theorem 3 Suppose (1) is fuzzy super consistent with a minimal point x^* , when B, C and γ are continuous and strictly monotonous, x^* is a minimal one of single posynomial fuzzy geometric programming (P_*) corresponding to the weight

$$\varepsilon_{m_t} = v_{m_t}(x^*)/g_m(x^*) (m = 0, 1, \dots, M; t = 1, 2, \dots, T_m)$$

$$M_{P_t} = M_{P_t}$$
(9)

and

Proof Because of that and according to

(1)
$$\iff$$

$$s.t. \sum_{i=1}^{T_n} c_{mi}^{-1}(\beta) B_m^{-1}(\alpha) \prod_{n=1}^{N} x_{n}^{\frac{\gamma-1}{n} \cdot (\beta)} \leq 1$$

$$x>0, \ \alpha, \ \beta \in [0, 1] \ (m=0, 1, \cdots, M)$$

$$(10)$$

we know super consistence (10) has a minimal point \overline{x}^* . And from the knowledge of Theorem 1.7.3 in [3], a minimal one \overline{x}^* exists in single posynomial geometric programming (\overline{P}_t) corresponding to weight $\varepsilon_{mt} = v_{mt}(\overline{x}^*)/g_m(\overline{x}^*)$ $(m=0, 1, \dots, M; t=1, 2, \dots, T_m)$, and $M_{\overline{P}_t} = M_{\overline{P}_t}$ such that

$$\varepsilon_{mi} = v_{mi}(x^*)/g_m(x^*)$$
, $M_{p_i} = M_{p_i}$

Hence the theorem is true.

Theorem 4 Suppose (1) is a fuzzy super consistence with a fuzzy optimal solution x^* , then there must exist Lagrange multiplier $\mu^* = (\mu_1^*, \mu_2^*, \cdots, \mu_M^*)^T \ge 0$ with continuous and strictly nondecreasing functions B, C and γ , such that

$$\nabla g_0(x^*) + \sum_{n=0}^{M} \mu_n^* \nabla g_n(x^*) = 0$$

while ω * defined by

$$\omega_{mi}^{*} = \begin{cases} \frac{v_{0i}(x^{*})/g_{0}(x^{*})}{\mu_{m}^{*} v_{mi}(x^{*})/g_{0}(x^{*})} & (m=1, 2, \dots, M) \\ \mu_{m}^{*} v_{mi}(x^{*})/g_{0}(x^{*}) & (m \neq 0, t=1, 2, \dots, T_{m}) \end{cases}$$

is a dual fuzzy optimal solution of (3). And

$$g_0(x^*)=d(\omega^*).$$

 $g_0(x^*) = d(\omega^*)$. Proof First, from Eq. (9), and the knowledge of Theorem 3, a minimal point corresponding to (P_s) is x^* with a minimal value being $\overline{g}_0(x^*) = g_0(x^*) > 0$; but from Theorem 2, \exists : ω^* tallying with (5), such that

$$\underline{d}(\omega^*) = \overline{g_0}(x^*) = g_0(x^*).$$

From Theorem 1, we know, ω^* is a fuzzy optimal solution of (3).

Lastly, from Eq. (5) and (9), then

$$\omega_{m_t}^* = \varepsilon_{m_0}^* = v_{m_t}(x^*)\omega_{m_0}^* / g_m(x^*)$$

when m=0, $\omega_{0i}^* = v_{0i}(x^*)/g_0(x^*)$ owing to $\omega_{00}^* = 1$; when $m \neq 0$, owing to

$$\omega_{m0} = \sum_{i=1}^{T_n} \omega_{mi}^* = \mu_m^* \sum_{i=1}^{T_n} v_{mi}(x^*) / g_0(x^*) = \mu_m^* g_m(x^*) / g_0(x^*) = \frac{\text{from}(11)}{m} \mu_m^* / g_0(x^*).$$

$$\omega_{mt}^{*} = v_{mt}(x^{*}) \mu_{m}^{*} / g_{m}(x^{*}) g_{0}(x^{*}) = \mu_{m}^{*} v_{mt}(x^{*}) / g_{0}(x^{*}).$$

Suming up, we have

$$\omega_{mt}^{*} = \begin{cases} v_{0t}(x^{*})/g_{0}(x^{*}), & (m=0; t=1, \dots, T_{0}), \\ \widetilde{\mu_{m}^{*}} v_{m}(\widetilde{x^{*}})/g_{0}(x^{*}), & (m\neq 0; t=1, \dots, T_{m}). \end{cases}$$

References

- [1] Cao Bingyuan, Study of fuzzy positive geometric programming dual form, Proc. IFSA-89, U.S.A., 775-779.
- [2] Cao Bingyuan, Fuzzy geometric programming (I), Int. J. of Fuzzy Sets and Systems, 53 (1993), 135-154.
- [3] Wu Fang, Yuan Yunyao, Geometric programming, Math. in Practice and Theory, 1.3 (1982).