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- arhicie we wili present a new fuzzy interpolation method. This
cinpared to the existing methods. does not require convex and
oo sets i the rules. but can be applied for arbitrary type of fuzzy
« novwomethod gives an interpretable conclusion in every case,
topevoushy pubhished methods.
bearsele we will also show a specialized, simplified version of the
o which uses three of the most wide spread set types in practice:
v otrangular. and the trapezoidal  fuzzy sets. The difference
« e and the tormer methods will be pointed out
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tiwars o0 tuzzy controllers in practice, and the growing number of
vo el known  The basic job of  fuzzy controllers is to transform the
membership degrees. then to generate conclusion fuzzy set and.

wods o detfuzity the conclusion [ 17
The Mamdani-controller generates conclusion
A T fuzzy set B" based on ( n= number of inputs)
iputs A-A," ( fig.]1 ), knowing A;; defined on
<utes mput universes X-X,, and B; defined on output
universe Y [2.3]. The number of rules is growing
exponentially with the number of input variables

- s and the number of fuzzy sets defined on the base
LSl The total number of rules is: r =rnllm“ where
-4 N .
) m, are the numbers of sets (terms) of the i-th
universe[4].

wbmput universes s determined by the context of the system. The
ot ot the Mamdani-controller and of similar other type controllers is
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determined, because the intersection of the given terms of a universe and the
observation can not be empty. In the practice, even stricter conditions apply: the input
terms A;; should be located densely. This means that the union of the a-cuts of the
input fuzzy sets (e.g. for a = 0.5) should be equal with the base set. The result of this
"rule of thumb" is that even in case of a small system, the number of rules is increasing
considerably. Having a large number of rules arises a lot of problems both in respect to
calculation time and to storage space. There are different solutions for this problem in
the literature [4,5,6,7].

The basic idea of these solutions is to generate the conclusion using only a small
number of known sets defined on the input universes with a corresponding inference
method. The application of such methods has an importance where the conclusion
should be obtained from a small amount of knowledge identified before. So, knowing
antecedents A, ,, on X, and consequent B; , on Y, relations B= FF i (4;) (=1..m) are
already known as fuzzy sets (here F¥ denotes a relation. It is not a mathematical
function, but a mapping from input (antecedent) fuzzy sets to consequent fuzzy sets). In
case of observation A’ clonclusion B’ can be deduced by known relations between sets
Aj and Aj; sorrounding A’ and their known consequents B; and Bj.,. Therefore
relation B” = F*(A”) can be given by some weighted combination of relations FFj and
F'j.1. So these methods give conclusion B’= B; for different fuzzy sets A’= A; and
generate conclusions for arbitrary observations between A; and A,.;.

The former interpolation methods induce several problems [8]:

- They can be applied only for convex and normal sets.

- They are not even interpetable for arbitrary convex and normal observation fuzzy
sets, namely, ordering must hold (Aj< A’ < Aj,;, Bj<Bj.; where the observation set is
A"

- The method does not give a directly interpretable conclusion fuzzy set in every case
("loops" in the membership functions).

- Using trapezoidalal, triangular or crisp sets, the shape is not preserved for the
conclusion. It means that in case of fuzzy triangular or trapeziodal terms calculation by
the three or four characteristic points e.g. by linear interpolation is not always
sufficient as it gives only a rough approximation (except if some rather strict conditions
apply). This is an important problem because of the computational complexity aspect.

In this article we will present a new method that can be applied on arbitrary shaped
fuzzy terms and that always results in directly "acceptable" sets, further on eliminate all
the mentioned problems. To show the essential new points in this method, we will
classify the former interpolation methods by their key idea. Since we use only the terms
flanking the observation let us use the following denotations: X is the input universe,
A and A; are the antecedents defined on X, Y is the output universe, B; and B, are the
consequents defined on Y, A' is the observation and B' is the conclusion that has to be
generated from A', A, A,, B; and B,.

The first class contains single term deduction methods. The conclusion (B’) is
generated from observation A' and A, a single rule, B, using some kind of General
Modus Ponens (GMP see e.g. the Revision Principle [7]). These methods conclusion if

the intersection of A' and A; is empty. The problem is that in this case the distance
between A' and A, is not meaningful.
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Methods in the second class, use at least two rules. The Mamdani-method and
other reasoning methods alike use the degree of matching between observation and at
least two antecedents by calculating a weighted average (see €.g.)[2]. This is a natural
way of interpolation.

The third class applies approximation for the a-cuts and this can be used even if
there is no formal matching. The linear interpolation method is the prototype of the
methods in this class. These methods generate conclusion B' to observation A’ using at
least two rules (A;—>B,, Ay—>B,) [4,5,6]. The basic idea of these methods is the
following: If given are sequence of observations A;, A', A, and a corresponding of
sequence of conclusions B;, B', B, where B' is unknown, B' is found by considering A'-
s relative location in X and determining B' from B, and B, accordingly. If A’ is not
comparable with A; (Aj<A’<A,;) then this method can not be applied. However
generalized interpolation and approximation methods (where polynomial or rational
functions are used on the characteristic points of the a-cuts, eliminate the difficulty of
orderedness condition [9].

For the same rules and observation some method gives a conclusion while some
others do not. If a certain reasoning method gives a meaningless conclusion, it does not
mean that there is no conclusion at all. The correctness of the conclusion depends on
the semantic interpolation of A;.A,, B,.B, that form the relevant part of the
knowledge base, and on the semantics of A' and B'. The methods in the third class
assume that there exists a "function" F from F(X) to F(Y) ( where F denotes the
fuzzy power set), with the following properties: A'=F(A,..A;), B=F(B;..B,).

The method introduced in this article, goes back to the basic interpolation of fuzzy
rules and searches for a conclusion similarly to the way of human thinking [10]. When
we hear a new question, at first we summarize our knowledge that is closest to the
topic of the question, and we try to find questions that approach the new question as
close as possible and whose answers are known. Then based on the comparison of our
factual knowledge and the new question we deduce an approximate answer. Following
this method, at first, we look for a fitting A’’ in the sequence of observation "between"
known A, and A,, which is closest to A’, and we determinate the corresponding
conclusion B”” in the sequence of conclusions "between" B; and B,. Then by some
inference method similar to the ones in the first class, by evaluating A, A>> and B’ the
conclusion B’ corresponding to A’ will be found. The approach of this paper that is
based on the previous considerations can be applied for arbitrary shape terms in the
rules, and in the observation. Of course, if we use general type fuzzy terms, the
operations with these sets will need much computational effort, because enough points
of the sets should be taken into consideration to have a good enough approximation.
Therefore, for practical applications we prepare a special method that can be applied

for crisp, triangular and trapezoidal fuzzy sets (that can be described by 2,3 and 4
characteristic points resp.).

IL. DEFINITIONS

1) x5 = F(x1,p1,p2,C1,¢2) is the revision function.
Let x;= F(X1,p1,€1,¢2) be that function, which results x; in such a way that a/b=c/d
is true both if x; <p; and p; < x; (see fig. 2).
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2) cp(A) will be called the central point of fuzzy set A.
A ((Vx €X, Uy (x))) fuzzy set is given on base set X. The center of the fuzzy set
1s:

ep(A) = sup(A “); nf(Aa)  hore o height(A): @)

( This is a generalization of the concept of the centre of the core.)

3.) suppnormgj; (A) is the normalization of the support of fuzzy set A for given SU,

SL.
Let A ((VxeX, pp(x))) fuzzy set be given on base set X, then let

suppnorm SU( ) be such a fuzzy set SNA, whose support’s minimum value is SL and

maximum value is SU. Let the membership function of SNA= suppnorm§;;(A) be:

Hexa(X) =Ha (x—cp(A)) ( ﬂAD +eplA) | . 3)

Where:  SU<cp(A)<SL;

If x<cp(A) then: If x>cp(A) then:
a=suppr(A)=inf{supp(A)); =suppy(A)=sup(supp(A));
b=SL; b=SU;

III. GENERAL SOLID CUTTING METHOD

According to the Introduction, sets A” and B” are to be determined, so in the
second step, B’ can be determined using A’, A” and B”.
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1) For determining A” and B” there are more conditions to be satisfied: A” should be
as close to A’ as possible. The closer is A” to A; the more similar they are. The same
"similarity relation" is required between B” and B; In an extreme case, when
observation A’ is identical with A; (an already known antcedent) then A" the closest
information to A' should be also identical with A;. Similarly, B” should be identical
with By, which implies that conclusions B' and B” are also the same. Therefore in the
extreme case, when the observation is A;, the conclusion should be B;.

Let’s define the crisp distance between two fuzzy sets with the distance of their
centres [5]:

d(ALAz)=d(cp(A;), cp(Az)). C))

To avoid the problem of abnormal membership function shapes for B’ no other
distance will be calculated, and all points of the membership function will be generated
by this distance as a reference.

For simplicity, let us consider X and Y be normalized for the interval [0,100] i.e.
Mx=max(supp(X))=My=max(supp(Y))=100, mx=min(supp(X))=my=min(supp(Y))=0.

Let us turn fuzzy sets A; and A, around their centers as it is shown in figure 3. The
rotated curves (A; and A,) are considered as the cross-sections of a geometric solid.
Fuzzy set A” can be found between A, and A, as the cross section of this imaginary
geometric solid. To get A”, the closest fuzzy set to A’, we have to cut the solid at the
position of A’, using the above introduced distance measure. Turning back the cross-
section into its original position we will obtain A”, a set that satisfies our conditions,
namely that is equal to A; or A, in an extreme case. We determine B” similarly.
Satisfying the conditions, the geometrical solid, that is created by turning B, and B,,
should be cut in such way that a/b is equal to c/d as it is shown in figures 3 and 5.

e — : .‘.Y
(a/b=c/d)
fig. 3 fig. 4 fig. 5

There are more possibilities to define the solid based on the rotated fuzzy sets.
Therefore, it is possible to handle more than two sets A; as one solid. In a simple case,
when we consider only two fuzzy sets, the geometric solid based on A; and A, can be
easily constructed as a linear translation surface with A; and A, as rule curves.

2) Set B’ can be determined from A’, A” and B” using a General Modus Ponens type
method of the first class of the introduction’s method, as it is shown in figure 4.
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Unfortunately these methods can be applied only on certain restricted types of fuzzy
sets. Therefore, to apply the generalized approach in every case, we have to use a

different technique. Nevertheless this method uses the main idea of the in the , first
class” reasoning approaches.

Our method satisfies the following conditions: B’ should be as close to B” as A’ is

to A” and cp(A’) should coincide with cp(A™), so let: cp(B’) = cp(B”). The method
consists of four steps:

a) Determination of the support of B’ using A’, A” and B”.

supp, (B)) = F(suppL(A'), supp; (A"), suppL(B"),cp(A"),cp(B")) : %)
suppy(B') = cp(B)) + F(  suppy(A’) — cp(A'), suppy(A") - cp(A"),

;o (6
suppy(B") - cp(B"), Mx - cp(A" ), My - cp(B")) ©)

b) Normalization of fuzzy sets A’, A”, and B” to the same support, while their center
does not change. The size of the common support is arbitrary, in this case let it be d.

SL=cp(A’)-d/2; SU=cp(A’)+d/2; SNA’ "suppnormSU(A'), @)
SL=cp(A”)-d/2, SU=cp(A”)+d/2; SNA”= suppnormgj(A"); (8)
SL=cp(B”)-d/2; SU=cp(B”)+d/2; SNB”= suppnormgy(B"); 9)

c)Determination of set SNB’ point by point, using function F.

X1 = gnaa 3P (SNA) +): (10)
Py = hgnar(supp (SNAY) +y); (11)
Py = HSNB"(SUPPL(SNB") +Y); (12)
a=Le=1  ye[0d]
uSNB.(suppL(SNB') + y) = F(xl’pl’p2’c1’°2) ) (13)

d)Normalization of set SNB’ to the support determined under point a).
SL=suppp(B’); SU=suppy(B’); (14)

The conclusion is: B’= suppnormg%(SNB'); (15)

The conclusion is a regular fuzzy set in every case, since the normalization of the
support must always result into a fuzzy set. Using this method we can get a conclusion
for any type of fuzzy sets.
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IV. SPECIALISED SOLID CUTTING METHOD

This method is a simplified version of the general method, which does not
calculate all the points of the membership function, but only the four characteristic
points. So this method is applicable for crisp, triangular and trapezoidal fuzzy sets,
while it requires only a small amount of computational time. This method can also be
divided into two parts. For simplicity let us denote A;=A’, A;=A”, B;=B’, B,~=B”, and
a;x the k-th chararacteristic point of A; in a, and da jx the distance from cp(A;) (fig. 6).

1) Determination of A, and By:

dasx=daix+(dazx-daix):C (16)
d4x=dp1xt(dp2x-dpix) - C a7
where: k=1..4

— 21 @2 43  3j4
— cp(A3) cp(Al) (1 8) Cp(AJ)
cp(A,)—cp(A))
fig.6.
cp(Bs ) = cp(B4) = cp(B1) + (cp(B2) - cp(By)) - C (19)
2) Determination of B3 from Aj, Ay, B,
a) Determination of Core(B5)
b3 2=F(a3 2;a4,2,b4,2,cP(A3);cp(B3)) (20)

b33 =cp(B3)+F(da33;da43:dB.4.3:Mx-cp(A3);My-cp(B3))  (21)

b) Determination of the membership function of B; betweenbs;andbs,: a € [O,l];

inf(B ) = inf{core( ) .
F{lin(Ase)infoore( ) in{c) in{ore( ) in(Buc) / t{oore(B.) 1)

Set B’ will be linear in this interval. In the same way linearity will hold between
bs 3 and bs 4 also. (We omit the proof of this part due to the lack of space). Thus, it is
enough to calculate the points b; ; and b 4 for a=0.

Determination of supp(Bs):

bs1=bsa F([a31/a32]; [as,1/as2]; [ban/ba2]; 15 1) (23)

Equation (23) is meaningless in an extreme case, when inf(core(As)) or
inf{core(B3))=0. Then, the problem can be eliminated by shifting the universe.
Determination of b; 4 is done similary: where Mx'>Mx; My'>My;

b3 .=My'-(My'-bs3) -
F([(Mx'-a3 4)/(Mx'-a3 3)]; [(Mx'-a4 4)(MX'-a4 3)]; [(My'-bs 4)(My'-bs 3)]; 1;1); (23)



V. EXAMPLES
1) Examples for the general solid cutting method

The result of the general method can be seen in figure 7. One figure contains two
diagrams. In the figures the observations are in the upper diagrams, and the conclusion
fuzzy sets in the lower ones. The sets drawn with thin line are the fuzzy sets A” and
B”.

Figure a) shows a simple case, where the similarity of the conclusion fuzzy set to
the observation set can be seen. Figure b) shows that the elements belonging mostly to
sets B' and B" are the same, similarly to elements of sets A' and A". Figure c) shows a
similar case to the previous one. Figure d) shows such a case, when the conclusion
function can be hardly given using only human comprehension.

AN ANSPAN. "N/ N
4\1;\3”/\“ M
N r\{\f\fﬂ\«ﬂ/\
[ M /\’;\Y{\«F/\a\/\’\

2) Examples for the specialised solid cutting method.

In figure 8 several examples A;, A; and A’ defined in X can be seen in the first
column. The thin lined set is A". The next figures (columns 2 to 4) compare three
different interpolation method. The second column treats the results obtained by the
Koéczy Hirota interpolation (single linear method), and the third column contains
results obtained by its extended version (Vass, Kalmar and Kéczy). The last column
can be found the conclusion fuzzy sets B’ generated by the specialized method.

In the first line the terms are rather "nice", and so every method results into a
directly interpretable conclusion. It can be observed that, if all methods give an
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interpretable conclusion (there is no need for normalization) and only triangular fuzzy
sets are used, the results are almost identical. The second line shows an example, with
trapezoidal fuzzy sets, where the results in the second and third column are
significantly different. The results in the third and fourth columns are more in
accordance with the features of the observation. Comparing these three different
methods it can be said that the Kéczy-Hirota-method usually gives an almost identical
conclusion (if it i1s directly interpretable) with the newly introduced specialized
method. The third and fourth lines present examples where the specialized method still
gives directly interpretable conclusions while the others do not. (In the first case the
"membership" function has to be regularized (by taking only its part that is alone the
support, and the this truncated result has to be normalized, while in the second, the
linear interpolation method results in to a loop that has to be cut, and again,
normalization is needed). The use of a single distance measured from the centre points
of the core guarantees the normality and the convexity.

Koéczy and Hirota  Vass, Kalmar and Koczy solid cutting method

AANA AANAANAA A
Vl\/\/\l/\f\/z\I/\/\/B\llf\/\/\
I/\//\/\V\l\ NAN NAN R

IADAR T RAARNK IR

ﬁg. 8

VI. CONCLUSION

The interpolation methods in the previous literature can be applied only on convex
sets, while the generalized method introduced in this paper is applicable for arbitrary
type fuzzy sets. As a matter of course, the general method makes calculation necessary
for "every point" of the set. The specialized method can be applied on the most
commonly used crisp, triangular and trapezoidal fuzzy sets, and requires only small
computational time. The original linear and nonlinear interpolation methods present
another problem, namely the conclusion set is not always convex, therefore it is not
sufficient to calculate only the four characteristic points of the set. Our specialized
method eliminates this problem, because it results always into crisp, triangular or
trapezoidal conclusions, therefore it is enough to calculate only the four characteristic
points. Another difference is that the new method offers a directly interpretable
conclusion in every case. We are working on the multi-dimensional version of the
method, where the conclusion can be obtained for observations on more than one
component universes.
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