$(\in \lor q)$ -level subset

Sandeep Kumar Bhakat

Siksha-Satra: Visva-Bharati University P.O.-Sriniketan-731236; Birbhum; W.B INDIA

Abstract

The notion of $(\in \lor q)$ -level subset is introduced. The study of $(\in \lor q)$ -level subsets of an $(\in, \in \lor q)$ -fuzzy subgroup (subring or ideal) are dealt with.

Keywords: Fuzzy algebra, level subset, $(\in \lor q)$ -level subset, fuzzy subgroup. $(\in, \in$ $\lor q$)-fuzzy subgroup, (\in , $\in \lor q$)-fuzzy normal subgroup, $(\in, \in \lor q)$ -fuzzy ideal, $(\in, \in \lor q)$ fuzzy radical.

1. Introduction.

Fuzzy subgroup was introduced by Rosenfeld [6]. Liu [4] introduced the notion of fuzzy subring and ideal. Since then different researchers have contributed significantly for the development of these literature. Using the notions of "belongingness (\in)" and "quasi-coincidence (q)" of fuzzy points with fuzzy sets the concept of (α, β) -fuzzy subgroup where α, β are any two of $\{\in, q, \in \lor q, \in \land, q\}$ with $\alpha \neq \in \land q$ is introduced in [1]. It was found that the most viable generalisation of Rosenfeld's fuzzy subgroup is the notion of $(\in, \in \lor q)$ -fuzzy subgroup. The detailed study with $(\in, \in \lor q)$ -fuzzy subgroup has been considered in [2]. It was found that a fuzzy subset λ of a group G is an $(\in, \in \lor q)$ -fuzzy subgroup of G if and only if $\lambda_t = \{x \in G; \ \lambda(x) \geq t\}$ is a subgroup of G $\forall 0 < t \leq 0.5$. On the other hand a fuzzy subset λ of a group G is a Rosenfeld's fuzzy subgroup (or (€, €)-fuzzy subgroup) if and only if λ_t is a subgroup $\forall t \in (0,1]$. t} is called level subset of λ .

Similar type of asymmetry for the values of t occurred in the cases of $(\in, \in \lor q)$ - fuzzy subrings, ideals. Now it would be an interesting study of level subsets of different fuzzy subsystems λ when " $\lambda(x) \geq t$ or $\lambda(x) + t > 1$ " or equivalently " $x_t \in \vee q \lambda$ ". With this object, the notion of a new type of level subset λ_i of a non-empty set G, called $(\in \lor q)$ -level subset is introduced where $\lambda_t = \{x \in G; \ \lambda(x) \geq t \text{ or }$ $\lambda(x)+t>1\}=\{x\in G;\ x_i\in \forall q\ \lambda\}.$

The most significant achievement of this study is that for any fuzzy subset λ of X (group or ring) is an $(\in \lor q)$ -fuzzy subgroup (or subring or ideal) of X if and only if the $(\in \lor q)$ -level subset $\lambda_t = \{x \in X; \ x_t \in \lor \ q \ \lambda\}$ is a subgroup (or subring or ideal) of X. The results with level subsets obtained in [2], [3] are verified with $(\in \lor q)$ -level subset.

2. Preliminaries.

Let G be a non-empty set.

Definition 2.1 [Zadeh] [7]. A map $\lambda: G \rightarrow$ [0, 1] is called a fuzzy subset of G.

Definition 2.2 [Ming and Ming] [5]. A fuzzy subset λ of G of the form

$$\lambda(y) = \begin{cases} t(\neq 0) & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

is said to be a fuzzy point with support x and value t and is denoted by x_t .

Definition 2.3 [Ming and Ming] [5]. A fuzzy point x_i is said to belong to (resp. be quasi-coincident with) a fuzzy set λ , written as $x_i \in \lambda$ (resp. $x_i \neq \lambda$) if

 $\lambda(x) \ge t(\text{resp.}\lambda(x) + t > 1).$

" $x_i \in \lambda$ or $x_i \neq \lambda$ " will be denoted by $x_i \in \lambda$

Definition 2.4. Let λ be a fuzzy subset of G. $\forall t \in (0,1], \text{ the set } \lambda_t = \{x \in G; \ \lambda(x) \geq$ Then

Definition 2.5. A fuzzy subset λ of G is said to have the "sup property" if for any non-empty subset T of R, there exists $a \in T$ such that

$$\lambda(a) = \sup\{\lambda(t); \ t \in T\}.$$

Let G be a group.

Definition 2.6 [Bhakat and Das] [1]. A fuzzy subset λ of G is said to be an $(\in, \in \vee q)$ -fuzzy subgroup of G if $\forall x, y \in G$ and $t, r \in (0, 1]$

(i)
$$x_t \in \lambda, y_r \in \lambda \Rightarrow (xy)_{M(t,r)} \in \forall q \lambda$$

(ii)
$$x_t \in \lambda \Rightarrow (x^{-1})_t \in \vee q \lambda$$
.

Theorem 2.7 [Bhakat and Das] [2]. (i) A necessary and sufficient condition for a fuzzy subset λ of a group G to be an $(\in$ $,\in$ \vee q)-fuzzy subgroup of G is $\lambda(xy^{-1}) \geq M(\lambda(x),\lambda(y),0.5) \quad \forall x,y\in G.$

- (ii) Let λ be a fuzzy subgroup of G. Then $\lambda_t = \{x \in G; \ \lambda(x) \ge t\}$ is a subgroup of G $\forall 0 < t \le 0.5$. Conversely, if λ is a fuzzy subset of G such that λ_t is a subgroup of G $\forall t \in (0, 0.5]$, then λ is an $(\in, \in \lor q)$ -fuzzy subgroup of G.
- (iii) Let G be a group. Then given any chain of subgroups $G_0 \subset G_1 \subset \dots \subset G_r = G$, there exists a fuzzy subgroup of G whose level subgroups are precisely the members of the chain.

Definition 2.8 Bhakat and Das] [2]. An $(\in, \in \lor q)$ -fuzzy subgroup λ of G is said to be $(\in, \in \lor q)$ -fuzzy normal if for any $x, y \in G$ and $t \in (0, 1]$,

$$x_i \in \lambda \Rightarrow (yxy^{-1})_i \in \vee q \lambda.$$

Theorem 2.9 [Bhakat and Das] [2]. Let λ be an $(\in, \in \vee, q)$ -fuzzy normal subgroup of G. Then $\lambda_t = \{x \in G; \ \lambda(x) \geq t\}$ is a normal subgroup of G $\forall 0 < t \leq 0.5$. Conversely, if λ is a fuzzy subset of G such that λ_t is normal subgroup of G $\forall 0 < t \leq 0.5$, then λ is $(\in, \in \vee q)$ -fuzzy normal.

Definition 2.10 [Bhakat and Das] [3]. A fuzzy subset λ of a ring R is said to be an $(\in, \in \lor q)$ -fuzzy subring of R if $\forall x, y \in R$ and $t, r \in (0, 1]$,

$$\begin{aligned} (i)x_t, y_r &\in \lambda \Rightarrow (x+y)_{M(t,r)} \in \vee \ q \ \lambda, \\ (ii)x_t &\in \lambda \Rightarrow (-x)_t \in \vee \ q \ \lambda \\ (iii)x_t, y_r &\in \lambda \Rightarrow (xy)_{M(t,r)} \in \vee \ q \ \lambda. \end{aligned}$$

Theorem 2.11 [Bhakat and Das] [3]. A fuzzy subset λ of a ring R is an $(\in, \in \vee q)$ -fuzzy subring of R if and only if $\lambda(x-y), \lambda(xy) \geq M(\lambda(x), \lambda(y), 0.5) \quad \forall x, y \in R$.

Definition 2.12 [Bhakat and Das] [3]. A fuzzy subset λ of a ring R is said to be $(\in, \in \lor q)$ -fuzzy ideal of R if

(i) λ is an $(\in, \in \vee q)$ -fuzzy subring of R,

(ii) $x_t \in \lambda$ and $y \in R \Rightarrow (xy)_t, (yx)_t \in \forall q \lambda$.

Theorem 2.13 [Bhakat and Das] [3]. A fuzzy subset λ of a ring R is an $(\in, \in \vee q)$ -fuzzy ideal of R if and only if

(i) $\lambda(x-y) \geq M(\lambda(x), \lambda(y), 0.5)$,

(ii) $\lambda(xy), \lambda(yx) \geq M(\lambda(x), 0.5) \quad \forall x, y \in R.$

Definition 2.14 [Bhakat and Das] [3]. An $(\in, \in \lor q)$ -fuzzy ideal of R is said to be

- (i) $(\in, \in \lor q)$ -fuzzy semiprime, if $\forall x, y \in R$ and $t \in (0, 1], (x^2)_t \in \lambda \Rightarrow x_t \in \lor q \lambda$,
- (ii) $(\in, \in \lor q)$ -fuzzy prime, if $\forall x, y \in R$ and $t \in (0, 1], (xy)_t \in \lambda \Rightarrow x_t \in \lor q \lambda$ or $y_t \in \lor q \lambda$.
- (iii) $(\in, \in \lor q)$ -fuzzy semiprimary, if $\forall x, y \in R \text{ and } t \in (0,1], (xy)_t \in \lambda \Rightarrow x_t^n \in \lor q \lambda \text{ or } y_t^m \in \lor q \lambda \text{ for some } n, m \in N$,

(iv) $(\in, \in \lor q)$ -fuzzy semiprimary, if $\forall x, y \in R \text{ and } t \in (0, 1], (xy)_t \in \lambda \Rightarrow x_t \in \lor q \lambda \text{ or } y_t^n \in \lor q \lambda \text{ for some } n \in N.$

Theorem 2.15 [Bhakat and Das] [3]. A fuzzy subset λ of a ring R is an $(\in, \in \vee q)$ -fuzzy subring (ideal) of R if and only if λ_t is a subring (ideal) of R $\forall t \in (0, 0.5]$.

Theorem 2.16 [Bhakat and Das] [3]. An $(\in, \in \lor q)$ -fuzzy ideal of R is $(\in, \in \lor q)$ -fuzzy prime if and only if $Max\{\lambda(x), \lambda(y)\} \ge M(\lambda(xy), 0.5) \quad \forall x, y \in R.$

Theorem 2.17 [Bhakat and Das] [3]. A fuzzy ideal λ of a ring R is an $(\in, \in \vee q)$ -fuzzy semiprime (or prime or semiprimary

or primary) if and only if λ_i is semiprime (or prime or semiprimary or primary) $\forall 0 < t \leq 0.5$.

Definition 2.18 [Bhakat and Das] [3]. Let λ be an $(\in, \in \vee q)$ -fuzzy ideal of R. The fuzzy subset $Rad\lambda$ of R defined by $(Rad\lambda)(x)$

$$= \begin{cases} M(\sup\{\lambda(x^n); \ n \in N\}, 0.5) & \text{if } \lambda(x) < 0.5 \\ \lambda(x) & \text{if } \lambda(x) \ge 0.5 \end{cases}$$

is called the $(\in, \in \vee q)$ -fuzzy radical of λ .

Theorem 2.19 [Bhakat and Das] [3]. Let λ be an $(\in, \in \vee q)$ -fuzzy ideal of R. Then (i) $Rad\lambda$ is an $(\in, \in \lor q)$ -fuzzy ideal of R. (ii) If λ has the "sup property", then $\forall 0 < t \leq 0.5, Rad\lambda_t = (Rad\lambda)_t.$

3. $(\in \lor q)$ - level subset.

Let X be a non-empty set and I denote the closed unit interval [0,1]. $t,r \in (0,1]$. λ, μ will denote any fuzzy subset of X.

The subset $\lambda_t = \{x \in$ Definition 3.1. $X; \ \lambda(x) \geq t \ \text{or} \ \lambda(x) + t > 1\} = \{x \in X; \ x_t \in X\}$ $\vee q \lambda$ is called $(\in \vee q)$ -level subset of X.

Remark 3.2. It follows from the definition of $(\in \lor q)$ -level subset that $\{x \in X; \ \lambda(x) \ge t\} \subseteq$ $\{x \in X; x_t \in \vee q \lambda\}$. However, the reverse set inclusion relation may not be true.

Example 3.3. Let $X = \{a, b, c\}$ and $\lambda =$ (0.6, 0.3, 0.8). Then $\{x \in X; x_{0.7} \in \forall q \lambda\} =$ $\lambda_{0.7} = \{a, c\} \neq \{c\} = \{x \in X; \ \lambda(x) \ge 0.7\}.$

Theorem 3.4.

- (i) $(\lambda \cup \mu)_t = \lambda_t \cup \mu_t$
- $(ii) (\lambda \cap \mu)_i = \lambda_i \cap \mu_i.$

Proof. (i) $x \in (\lambda \cup \mu)_i \leftrightarrow x_i \in \forall q (\lambda \cup \mu) \leftrightarrow$ $\mu(x)+t>1\} \Leftrightarrow x\in\lambda_t \text{ or } x\in\mu_t \Leftrightarrow x\in(\lambda_t\cup\mu_t). \quad M(\lambda(x_0),\mu(y_0).$

(ii) $x \in (\lambda \cap \mu)_t \Leftrightarrow (\lambda \cap \mu)(x) \ge t \text{ or } (\lambda \cap \mu)(x) +$ $t > 1 \Leftrightarrow {\lambda(x) \ge t \text{ and } \mu(x) \ge t} \text{ or } {\lambda(x) + t > 1}$ and $\mu(x) + t > 1$ $\Leftrightarrow \{\lambda(x) \ge t \text{ or } \lambda(x) + t > 1\}$ and $\{\mu(x) \ge t \text{ or } \mu(x) + t > 1\} \Leftrightarrow x \in \lambda_t$ and $x \in \mu_i \Leftrightarrow x \in (\lambda_i \cap \mu_i).$

Theorem 3.5.

(i)
$$\{\lambda \cup (\mu \cap \nu)\}_t = (\lambda \cup \mu)_t \cap (\lambda \cup \nu)_t$$

(ii) $\{\lambda \cap (\mu \cup \nu)\}_t = (\lambda \cap \mu)_t \cup (\lambda \cap \nu)_t$

Proof. (i) $\{\lambda \cup (\mu \cap \nu)\}_t = \lambda_t \cup (\mu \cap \nu)_t$ [by Theorem 3.4(i) $= \lambda_i \cup (\mu_i \cap \nu_i)$ by Theorem $3.4(ii) \mid = (\lambda_t \cup \mu_t) \cap (\lambda_t \cup \nu_t) = (\lambda \cup \mu)_t \cap (\lambda \cup \nu)_t.$ (ii) Similar to (i).

Remark 3.6. If t > r, then λ_t may not be a subset of λ_r .

Example 3.7. Let $X = \{a, b, c\}$ and $\lambda =$ (0.6, 0.2, 0.3). Then $b \in \lambda_{0.9}$ but $b \notin \lambda_{0.8}$.

Theorem 3.8. $(\overline{\lambda_t}) \subset \{(\overline{\lambda_t}) \cap (\overline{\lambda})_{1-t}\}$ where λ denote the complement of λ .

Proof. $x \in \overline{(\lambda_i)} \Rightarrow x \notin \lambda_i \Rightarrow x_i \overline{\in \nabla q} \lambda \Rightarrow$ $\lambda(x) < t \text{ and } \lambda(x) + t \le 1 \Rightarrow -\lambda(x) > -t \text{ and }$ $-\lambda(x)-t \ge -1 \Rightarrow 1-\lambda(x) > 1-t \text{ and } 1-t$ $\lambda(x) - t \ge 0 \Rightarrow \overline{\lambda}(x) > 1 - t \text{ and } \overline{\lambda}(x) - t \ge 0$ $0 \Rightarrow \overline{\lambda}(x) > 1 - t \text{ and } \overline{\lambda}(x) \ge t \Rightarrow x \in (\overline{\lambda})_{1-t} \text{ and }$ $x \in (\overline{\lambda})_t \Rightarrow x \in \{(\overline{\lambda})_{1-t} \cap (\overline{\lambda})_t\}.$

Corollary 3.9. $(\overline{\lambda_t}) \subset \{(\overline{\lambda})_t \cup (\overline{\lambda})_{1-t}\}$

Example 3.10. Let $X = \{a, b, c\}$ and $\lambda =$ (0.2, 0.6, 0.4). Then $\overline{\lambda} = (0.8, 0.4, 0.6)$ and $a \in$ $\{(\overline{\lambda})_{0,2}\cap(\overline{\lambda})_{0,3}\}\subset\{(\overline{\lambda})_{0,2}\cup(\overline{\lambda})_{0,3}\}\text{ but }a\notin\overline{(\overline{\lambda}_{0,2})}.$

Theorem 3.11. $\overline{(\lambda_t \cup \mu_t)} \subset (\overline{\lambda})_{1-t} \cap (\overline{\mu})_{1-t}$

Proof. $\overline{(\lambda_t \cup \mu_t)} = \overline{(\lambda \cup \mu)_t} \subset (\overline{\lambda})_{1-t} \cap (\overline{\mu})_{1-t}$ [by Theorem 3.8] = $(\overline{\lambda} \cap \overline{\mu})_{1-t} = (\overline{\lambda})_{1-t} \cap (\overline{\mu})_{1-t}$.

Theorem 3.12. If $\lambda \circ \mu$ has the "sup property", then $(\lambda \circ \mu)_t = \lambda_t \cdot \mu_t$.

Proof. Let $z \in X$. Then $z \in (\lambda \circ \mu)_i \Rightarrow$ $(\lambda \cup \mu)(x) \ge t \text{ or } (\lambda \cup \mu)(x) + t > 1 \Leftrightarrow \{\lambda(x) \ge t \mid (\lambda \circ \mu)(z) \ge t \text{ or } (\lambda \circ \mu)(z) > 1 - t \text{ . Since } \lambda \circ \mu$ or $\mu(x) \geq t$ or $\{\lambda(x) + t > 1 \text{ or } \mu(x) + t > 1 \text{ as the "sup property" there exist } x_0, y_0 \in X \text{ such } x_0 \in X \text{ such } x_0$ 1} $\Leftrightarrow \{\lambda(x) \ge t \text{ or } \lambda(x) + t > 1\} \text{ or } \{\mu(x) \ge t \text{ or that } z = x_0 y_0 \text{ and } \sup\{M(\lambda(x), \lambda(y)); z = xy\} = x_0 y_0$

Case I.

 $(\lambda \circ \mu)(z) \geq t \Rightarrow \sup\{M(\lambda(x), \mu(y)); \ z = xy\} \geq t.$ i.e, $x_0 \in \lambda_t$ and $y_0 \in \mu_t$ and hence $z \in \lambda_t, \mu_t$. So $(\lambda \circ \mu)_t \subset \lambda_t \cdot \mu_t$.

Case II. $(\lambda \circ \mu)(z) > 1 - t$.

Then $M(\lambda(x_0), \mu(y_0)) > 1 - t$, i.e, $x_0 \in \lambda_t$ and $y_0 \in \mu_t$ and thus $z \in \lambda_t, \mu_t$. So $(\lambda \circ \mu)_t \subset$ $\lambda_{t}.\mu_{t}$. Again $z \in \lambda_{t}.\mu_{t} \Rightarrow \exists x, y \in X$ such that z = xy and $x \in \lambda_i$ and $y \in \mu_i \Rightarrow {\lambda(x) \geq t}$ or $\lambda(x) > 1 - t$ and $\{\lambda(y) \ge t \text{ or } \lambda(y) > t$ $1-t\} \Rightarrow \sup\{M(\lambda(x),\mu(y)); z=xy\} \geq t \text{ or }$ $\sup\{M(\lambda(x),\mu(y));\ z=xy\}>1-t\Rightarrow z\in(\lambda\circ$ μ_{t} . So $\lambda_{t}.\mu_{t} \subset (\lambda \circ \mu)_{t}$. Therefore $(\lambda \circ \mu)_{t} = \lambda_{t}.\mu_{t}$.

Henceforth, unless otherwise mentioned. a fuzzy subgroup or a fuzzy subring will indicate an $(\in, \in \lor q)$ -fuzzy subgroup or an $(\in, \in \lor q)$ - fuzzy subring. G will denote a group with e as identity and R will denote a ring with 0 as null element.

Theorem 3.13. A fuzzy subset λ of G is a fuzzy subgroup of G if and only if λ_i is a subgroup for all $t \in (0, 1]$.

Proof. Let λ be a fuzzy subgroup of G. Let $x, y \in \lambda_t$. Then $\lambda(x) \geq t$ or $\lambda(x) + t > 1$ and $\lambda(y) \geq t \text{ or } \lambda(y) + t > 1$. Now since $\lambda(xy^{-1}) \geq t$ $M(\lambda(x), \lambda(y), 0.5)$ since λ is a fuzzy subgroup of G, it follows that $\lambda(xy^{-1}) \geq M(t, 0.5)$. For otherwise, $\lambda(xy^{-1}) < M(t, 0.5) \Rightarrow x_t \in \nabla q \lambda$ or $y_t \in \nabla q \lambda$, a contradiction. If M(t, 0.5) = t, then $xy^{-1} \in \lambda_t$ and if M(t, 0.5) = 0.5, then $\lambda(xy^{-1}) +$ t>1 and hence $xy^{-1}\in\lambda_t$. So λ_t is a subgroup of G. Conversely, let λ be a fuzzy subset of G such that λ_t is a subgroup of G $\forall t \in (0,1]$. If possible, let $\lambda(xy^{-1}) < t < M(\lambda(x), \lambda(y), 0.5)$ for some $t \in (0, 0.5)$. Then $x, y \in \lambda_t$ and thus $xy^{-1} \in \lambda_t$, i.e, $\lambda(xy^{-1}) \geq t$ or $\lambda(xy^{-1}) + t > t$ 1, thus in any case a contradiction. Therefore $\lambda(xy^{-1}) \ge M(\lambda(x), \lambda(y), 0.5) \quad \forall x, y \in G, \text{ so } \lambda \text{ is}$ a fuzzy subgroup of G.

the chain.

Proof. Let $\{t_i; t_i \in (0,0.5); i = 1,2,...,r\}$ be such that $t_1 > t_2 > \dots > t_r$. Let $\lambda : G \to I$ be defined as follows:

$$\lambda(x) = \begin{cases} t(>0.5) & \text{if } x = e, \\ u(>t) & \text{if } x \in G_0 - \{e\}, \\ t_1 & \text{if } x \in G_1 - G_0, \\ t_2 & \text{if } x \in G_2 - G_1, \\ \vdots & \vdots & \vdots \\ t_r & \text{if } x \in G_r - G_{r-1} \end{cases}$$

Then λ is a fuzzy subgroup of G. Note that, $\lambda_{0.5} =$ G_0 and $\lambda_i = G_i$ for i = 1, 2, ..., r. This follows from the fact that $x_i \in \bigvee q \lambda \Rightarrow x_i \in \lambda$ if $t \in$ (0, 0.5).

Remark 3.15. If $t_i \notin (0,0.5)$, then all the members of the chain may not be characterised by the $(\in \vee q)$ -level subgroups of λ .

Example 3.16. Let G = Additive group of all integers. Let nG = Additive group of all integers multiple of n. Then $16G \subset 8G \subset 4G \subset 2G \subset G$ be a chain of subgroups of G. Let $\lambda: G \to I$ be defined as follows:

$$\lambda(x) = \begin{cases} 0.6 & \text{if } x = 0 \\ 0.9 & \text{if } x \neq 0, x \in 16G \\ 0.7 & \text{if } x \in 8G - 16G \\ 0.5 & \text{if } x \in 4G - 8G \\ 0.2 & \text{if } x \in 2G - 4G \\ 0.1 & \text{if } x \in G - 2G \end{cases}$$

Then λ is a fuzzy subgroup of G. Note that $\lambda_{0.5} =$ $4G = \lambda_{0.6} = \lambda_{0.7}, \ \lambda_{0.9} = 2G = \lambda_{0.2}, \ \lambda_{0.1} = G.$

Theorem 3.17. A fuzzy subset λ is an $(\in, \in$ \vee q)-fuzzy normal subgroup of G if and only if λ_t is a normal subgroup of $G \quad \forall t \in (0, 1]$.

Proof. Let λ be an $(\in, \in \vee q)$ -fuzzy normal subgroup of G. Then λ_t is a subgroup of G [by Theorem 3.13]. Let $x \in \lambda_i$. Then $x_i \in$ **Theorem 3.14.** Let G be a group. then given $\forall q \lambda$. Now $\lambda(yxy^{-1}) \geq M(\lambda(x), 0.5) \quad \forall y \in G$ any chain of subgroups $G_0 \subset G_1 \subset \subset G_r = [$ since λ is $(\in, \in \vee q)$ -fuzzy normal.] and thus G, there exists a fuzzy subgroup of G whose $(\in yxy^{-1} \in \lambda_t, \forall y \in G$. So λ_t is normal. Convey q)-level subgroups are precisely the members of versely, let λ be a fuzzy subset a fuzzy subset of G such that λ_t is a normal subgroup of G either $(Rad\lambda)(x) \ge t$ or $(Rad\lambda)(x) + t > 1$. $\forall t \in (0,1]$. Then λ is a fuzzy subgroup of G [by Theorem 3.13]. If possible, let $\lambda(yxy^{-1})$ $M(\lambda(x), 0.5)$ for some $x, y \in G$. Choose t such that $\lambda(yxy^{-1}) < t < M(\lambda(x), 0.5)$. Then $x \in \lambda_t$ and thus $yxy^{-1} \in \lambda_t \quad \forall y \in G$, since λ_t is normal, i.e, $yxy^{-1} \in \vee q \lambda$, i.e, $\lambda(yxy^{-1}) \geq t$ or $\lambda(yxy^{-1}+t>1)$, and thus in any case a contradiction. So $\lambda(yxy^{-1}) \geq M(\lambda(x), 0.5)$ and hence λ is $(\in, \in \lor q)$ -fuzzy normal.

Theorem 3.18. A fuzzy subset λ of a ring R is a fuzzy subring (ideal) of R if and only if λ_i is a subring (ideal) of $R \quad \forall t \in (0,1]$.

Proof. Similar to the proof of Theorem 3.11.

Theorem 3.19. A fuzzy ideal λ of a ring R is $(\in, \in \lor q)$ -fuzzy semiprimary (or primary or semiprime or prime) if and only if λ_t is semiprimary (or primary or semiprime or prime $\forall t \in (0,1].$

Proof. Let λ be an $(\in, \in \vee q)$ -fuzzy prime ideal of R. Then λ_t is an ideal of R. $\forall t \in (0,1]$ [by Theorem 3.18]. Let $x, y \in \lambda_t$. Then $(xy)_t \in$ $\vee q \lambda$. Since λ is an $(\in, \in \vee q)$ -fuzzy prime ideal of $\mathbb{R}, \max\{\lambda(x),\lambda(y)\} \geq M(\lambda(xy),0.5). \text{ If } (xy)_i \in$ λ , then either $x_i \in \vee q \lambda$ or $y_i \in \vee q \lambda$. If $(xy)_t \ q \ \lambda$, then either $x_t \ q \ \lambda$ or $y_t \ q \ \lambda$. Thus in any case $x \in \lambda_t$ or $y \in \lambda_t$. So λ_t is prime. Conversely, let λ be a fuzzy subset of R such that λ_t is a prime ideal of R $\forall t \in (0,1]$. Then λ is a fuzzy ideal of R [by Theorem 3.18]. Now $(xy)_t \in$ $\lambda \Rightarrow xy \in \lambda_i \Rightarrow x \in \lambda_i \text{ or } y \in \lambda_i \Rightarrow x_i \in \forall q \lambda$ or $y_t \in \vee q \lambda$. Therefore λ is an $(\in, \in \vee q)$ -fuzzy prime. The proof of the other cases may similarly be disposed of. "

Theorem 3.20. If λ is a fuzzy ideal of R with "sup property', then $\forall t \in (0,1], Rad\lambda_t =$ $(Rad\lambda)_t$.

Proof. $x \in Rad\lambda_t \Rightarrow x^n \in \lambda_t$ for some $n \in$ $N \Rightarrow (x^{n})_{t} \in \vee q \lambda \Rightarrow x_{t} \in \vee qRad\lambda \Rightarrow x \in$ $(Rad\lambda)_t$ [since $(Rad\lambda)(x) \geq \lambda(x)$ and $\lambda(x^n) \geq$ $M(\lambda(x), 0.5) \quad \forall n \in N \mid . \text{ So } Rad\lambda_t \subseteq (Rad\lambda)_t.$ Next, let $x \in (Rad\lambda)_t$. Then $x_t \in \bigvee q(Rad\lambda)$. i.e,

Case I: Let $(Rad\lambda)(x) \geq t$.

Let $t \leq 0.5$. If $\lambda(x) \leq 0.5$, then $(Rad\lambda)(x) =$ $M(\lambda(x^r), 0.5) \ge t$ for some $r \in N$ isince λ has the "sup property"]. i.e, $x_t^r \in \lambda$ and thus $x^r \in \lambda_i$. Hence $x \in Rad\lambda_i$. If $\lambda(x) > 0.5$, then $(Rad\lambda)(x) = \lambda(x) \geq t$ and hence $x \in Rad\lambda_t$. Next, let t > 0.5. Then $(Rad\lambda)(x) = \lambda(x) \ge t$ and thus $x \in Rad\lambda_t$.

Case II: Let $(Rad\lambda)(x) + t > 1$.

So either $M(\lambda(x^r), 0.5) + t > 1$ for some $r \in$ N or $\lambda(x) + t > 1$. i.e, $x_t^r q \lambda$ or $x_t q \lambda$. i.e, $x' \in \lambda_t$ or $x \in \lambda_t$ i.e. $x \in Rad\lambda_t$. Thus in any case $x \in Rad\lambda_i$. Hence $(Rad\lambda)_i \subseteq Rad\lambda_i$. So $Rad\lambda_t = (Rad\lambda)_t \quad \forall t \in (0,1].$

References.

- 1. S.K. Bhakat and P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems 51 (1992) 235-241.
- 2. S.K. Bhakat and P. Das, $(\in, \in \lor q)$ -fuzzy subgroups. Fuzzy Sets and Systems To appear in 1995.
- 3. S.K. Bhakat and P. Das, Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems. To appear in 1995.
- 4. W.J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982) 133-139.
- 5. P.P. Ming and L.Y. Ming, Fuzzy topology I: Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571-599.
- 6. A. Rosenfeld, Fuzzy subgroups, J. Math. Anal. Appl. 35 (1971) 512-517.
- 7. L.A. Zadeh, Fuzzy sets, Inform Control 8 (1965) 338-353.