PRODUCTS OF (a,b ; \in_{α} , \in_{α} \vee $q_{(\alpha,b)}$) - FUZZY SUBGROUPS

Pratyayananda Das
Department of Mathematics
Burdwan University
Golapbag, Burdwan
West Bengal
INDIA

Abstract: Internal direct product, semidirect product, subdirect product and amalgameted product of (a,b); \in_{α} , \in_{α} , $q_{(a,b)}$ - fuzzy subgroups are discussed. Some results concerning level subgroups are obtained.

Keywords: Fuzzy algebra, Fuzzy subgroup, Internal direct product, Subdirect product, Amalgameted product.

1. INTRODUCTION:

Given a subinterval [a,b] of I , with a view to study fuzzy subsystems λ of a universal algebra G such that λ_t are subalgebras of G \forall t \in [a,b] , the notion of an (a,b; α , β) fuzzy subalgebra was introduced in [1] . It was found that (a,b; \in _a, \in _a \vee q_(a,b))- fuzzy subalgebras may play an important role as a useful non-trivial generalisation of Rosenfeld - type fuzzy subalgebras .But to arrive at a definite conclusion , it is necessary to study different aspects of (a,b; \in _a, \in _a \vee q_(a,b))-fuzzy subsystems of different algebraic systems .

Various types of products of fuzzy subgroups (in Rosenfeld's sense) were studied by different authors . In particular , direct product was discussed by Sherwood [4] , internal direct product by Makamba [2] , and semidirect

product by Wetherilt [5]. The object of this paper is to study different type of products of (a,b; \in , \in

Internal direct product and semidirect product are discussed in Section 3. Subdirect product and amalgameted product are two important types of product in classical group theory. Their fuzzy analogoues are discussed in Sections 4 and 5 respectively. To introduce the notion of subdirect product fuzzy proper functions are used to define a new type of epimorphism of fuzzy subgroups. Some results concerning level subgroups are obtained. It is proved that if λ_i , μ_i , γ_i , δ_i are fuzzy subgroups of a finite group G such that λ_i is the direct product of μ_i and γ_i with amalgameted fuzzy subgroup δ_i for i=1,2 and if μ_i be epimorphic to μ_2 , γ_i be epimorphic to γ_2 under epimorphisms satisfying certain conditions, then λ_i is epimorphic to λ_2 .

2. PRELIMINARIES:

Let X be any set and let I = [0,1]. I^{x} will denote the set of all functions $\alpha: X \longrightarrow I$. If $x,y \in I$, M(x,y) will denote the minimum of x and y.

Let $a,b \in I$ be such that $\emptyset < a < b \le 1$.

Let c = M(2b,1), d = M(2b,1+a) and k = d/2.

DEFINITION 2.1: Let $\lambda \in I^X$. If $\emptyset < r \le 1$, $\emptyset \le t < 1$ and $\emptyset < \alpha < \beta \le 1$, then λ_r , λ_{st} and $\lambda_{\alpha,\beta}$ are defined by $\lambda_r = \{ x \in G; \lambda(x) \ge r \}.$

 $\lambda_{st} = \{ x \in G ; \lambda(x) > t \}.$

 $\lambda_{\alpha,\beta} = \{ \mathbf{x} \in \mathbf{G} ; \alpha < \lambda(\mathbf{x}) \le \beta \}$.

DEFINITION 2.2: Let X,Y be two sets and let $\lambda \in I^X$, $\mu \in I^Y$. A fuzzy subset F of X×Y is called a proper function from λ to μ if (i) $F(x,y) \leq M(\lambda(x), \mu(y)) \ \forall \ x \in X$, $\forall \ y \in Y$,

(ii) for each $x \in X$, $\exists y_o \in Y$ such that $F(x,y_o) = \lambda(x)$ and $F(x,y) = \emptyset \ \forall \ y \neq y_o$.

A proper function F from λ to μ is said to be (a,b)-surjective if for all $y \in \mu_{Sa}$, there exists $x \in \lambda_{Sa}$ such that $F(x,y) = \lambda(x)$ and $\lambda(x) \ge \mu(y)$ if $y \in \mu_{a,k}$ and $\lambda(x) \ge k$ if $\mu(y) > k$.

DEFINITION 2.3[1]: Let $\lambda \in I^X$. A fuzzy point (x,t) is said to belong to λ with respect to a, denoted by $(x,t) \in_{\alpha} \lambda$ (resp., coincident with λ with respect to (a,b) denoted by $(x,t) \in_{\alpha} (x,t) \in_{\alpha} (x,t$

Let G be a group .

DEFINITION 2.4[1]: A fuzzy subset λ of G is said to be an $(a,b,\in_{\alpha},\in_{\alpha}\vee q_{(\alpha,b)})$ fuzzy subgroup of G if

(i) $(x,t) \in_{\alpha} \lambda$, $(y,t_i) \in_{\alpha} \lambda \Rightarrow (xy, M(t,t_i)) \in_{\alpha} q_{(a,b)} \lambda$,

(ii) $(x,t) \in_{\alpha} \lambda \Rightarrow (x^{-1}, t) \in_{\alpha} q_{(\alpha,b)} \lambda$

for all $x,y \in G$ and for all $t,t_1 \in (a,c]$.

The conditions (i) and (ii) of Definition 2.4 are equivalent to respectively

(I) $\lambda(xy) \ge M (\lambda(x), \lambda(y), k) \forall x,y \in \lambda_{aa}$

(II) $\lambda(x^{-1}) \ge H$ ($\lambda(x), k$) $\forall x \in \lambda_{sa}$.

In what follows, unless otherwise mentioned, by a fuzzy

subgroup of G , we shall mean an (a,b) , \in_a , $\in_a \lor q_{(a,b)}$) – fuzzy subgroup of G .

DEFINITION 2.5: Let λ and μ be two fuzzy subgroups of G. A proper function F from λ to μ is said to be a homomorphism from λ to μ if for $\mathbf{x}, \mathbf{x_i} \in \lambda_{\mathbf{sa}}$, $\mathbf{y}, \mathbf{y_i} \in \mu_{\mathbf{sa}}$

 $F(x,y) = \lambda(x)$, $F(x_1,y_1) = \lambda(x_1) \Rightarrow F(xx_1,yy_1) = \lambda(xx_1)$.

A homomorphism F from λ to μ is called an epimorphism if it is (a,b)-surjective .

LEMMA 2.6: Let λ and μ be fuzzy subgroups of G. Let F be a homomorphism from λ to μ . Then

(i) $F(e,e) = \lambda(e)$, where e is the identity element of G.

(ii) If for $x \in \lambda_{sa}$, $y \in \mu_{sa}$, $F(x,y) = \lambda(x)$, then $F(x^{-1},y^{-1}) = \lambda(x^{-1})$.

DEFINITION 2.7: Let λ and μ be two fuzzy subsets of G. The product $\lambda\mu$: G \longrightarrow I is defined by

 $\lambda \mu(\mathbf{x}) = \sup \{ H(\lambda(\mathbf{y}), \mu(\mathbf{z})) ; \mathbf{y}\mathbf{z} = \mathbf{x} \} \forall \mathbf{x} \in G.$

DEFINITION 2.8: Let λ and μ be fuzzy subgroups of G such that $\lambda \leq \mu$. Then λ is called a fuzzy subgroup of μ .

3. INTERNAL DIRECT PRODUCT AND SEMIDIRECT PRODUCT:

Let G be a group .

DEFINITION 3.1: A fuzzy subgroup λ of G is said to be a fuzzy normal subgroup of G if

 $(x,t) \in_{\alpha} \lambda \Rightarrow (y^{-1}xy,t) \in_{\alpha} q_{(\alpha,b)} \lambda \forall x,y \in G \text{ and } \forall t \in (a,c]$

or equivalently

 $\lambda(y^{-1}xy) \ge M (\lambda(x),k) \forall y \in G \text{ and } \forall x \in \lambda_{sa}.$

THEOREM 3.2: A fuzzy subset λ of G is a fuzzy normal

subgroup of G iff λ_t (λ_{st}) is a normal subgroup of G for all $t \in (a,k]$ ($t \in [a,k)$).

THEOREM 3.3: Let μ , $\mu_{\bf i}$, $\mu_{\bf g}$ be fuzzy subgroups of G such that $\mu = \mu_{\bf i} \mu_{\bf g}$. Then $\mu_{\bf ga} = (\mu_{\bf i})_{\bf ga} (\mu_{\bf g})_{\bf ga}$.

DEFINITION 3.4 :Let μ , μ_1 , μ_2 be fuzzy subgroups of G . Then μ is said to be the fuzzy internal direct product of

 $\mu_{\mathbf{1}}$ and $\mu_{\mathbf{2}}$ written as $\mu = \mu_{\mathbf{1}} \times \mu_{\mathbf{2}}$ if

(i) $\boldsymbol{\mu_{\text{i}}}$, $\boldsymbol{\mu_{\text{g}}}$ are fuzzy normal .

(ii) $\mu(\mathbf{x}) \leq \mathbf{a} \iff (\mu_1 \mu_2)(\mathbf{x}) \leq \mathbf{a}$

 $\mu(\mathbf{x}) = (\mu_1 \mu_2)(\mathbf{x}) \quad \forall \quad \mathbf{x} \in \mu_{\alpha,k} \text{ and } \mu(\mathbf{x}) > k \iff (\mu_1 \mu_2)(\mathbf{x}) > k .$ $(iii) \quad (\mu_1 \cap \mu_2)_{\alpha} = \{e\} .$

THEOREM 3.5: Let G be a finite group . A fuzzy subgroup μ of G is a fuzzy internal direct product of two fuzzy subgroups μ_{i} , μ_{z} iff for all t \in (a,k], μ_{t} is an internal direct product of $(\mu_{i})_{t}$ and $(\mu_{z})_{t}$.

DEFINITION 3.6:Let G and H be two multiplicative groups and $\alpha:G \longrightarrow Aut(H)$ be a homomorphism of groups mapping $g \in G$ to $\alpha_g \in Aut(H)$. The set G×H is given the structure of a group by defining $\forall h$, $h_i \in H$ and g, $g_i \in G$,

$$(g,h)(g_{i},h_{i}) = (gg_{i}, \alpha_{g}(h)h_{i})$$
.

This group is called a semidirect product of G and H and is denoted by $G \times_{\sim} H$.

THEOREM 3.7: Let λ and μ be two fuzzy subgroups of the groups G and H respectively . Let α : G \longrightarrow Aut(H) be a homomorphism such that μ is α (G)-invariant .Then the fuzzy subset $\lambda \times_{\alpha} \mu$ of G \times_{α} H given by

$$(\lambda \times_{\alpha} \mu)(g,h) = H (\lambda(g), \mu(h))$$

is a fuzzy subgroup of G \times_{α} H , called the fuzzy semidirect product of λ and μ .

4. SUBDIRECT PRODUCT:

Let λ_i be a fuzzy subgroup of a group G_i \forall $i \in I$. λ = $\prod \{\lambda_i \; ; \; i \in I\} : \prod \{G_i; \; i \in I\} \longrightarrow I \; \text{defined by} \; \lambda[(\mathbf{x}_i)] = \inf \{\lambda_i(\mathbf{x}_i); \; i \in I\} \; \text{for all} \; (\mathbf{x}_i) \in \prod \{G_i \; ; \; i \in I\} \; \text{is a fuzzy subgroup of} \; \prod \{G_i \; ; \; i \in I\} \; .$

The proper function π_{λ_i} from $\prod \{\lambda_i : i \in I\}$ to λ_i defined by $\pi_{\lambda_i}((\mathbf{x}_i),\mathbf{x}) = (\prod\{\lambda_i : i \in I\})[(\mathbf{x}_i)]$ or \emptyset according as $\mathbf{x} = \mathbf{x}_i$ or $\mathbf{x} \neq \mathbf{x}_i$ is called the projection mapping from $\prod \{\lambda_i : i \in I\}$ to λ_i .

Clearly n_{λ_i} is a homomorphism .

DEFINITION 4.1: Let $f:\lambda \longrightarrow \mu$ be a proper function and let λ_o be a fuzzy subset of λ . The proper function $f_o:\lambda_o \longrightarrow \mu$ defined by

 $f_o(x,y) = \lambda_o(x)$ or 0 according as $f(x,y) = \lambda(x)$ or 0, is said to be the restriction of f to λ_o and it is denoted by $f|\lambda_o$.

DEFINITION 4.2: A fuzzy subgroup λ_o of $\prod\{\lambda_i : i \in I\}$ is called a fuzzy subdirect product of $\prod\{\lambda_i : i \in I\}$ if $\pi_{\lambda_i}|_{\lambda_o}$ is an epimorphism for all $i \in I$.

THEOREM 4.3: Let λ_i be a fuzzy subgroup of G_i for all $i \in I$ Let λ_o be a fuzzy subgroup of $\prod \{\lambda_i : i \in I\}$.

- (i) If λ_0 be a fuzzy subdirect product of $\prod\{\lambda_i; i \in I\}$, then $(\lambda_0)_{st}$ is a subdirect product of $\prod\{(\lambda_i)_{st}; i \in I\}$ for all $t \in [a,k)$.
- (ii) If $(\lambda_o)_t$ is a subdirect product of $\prod \{(\lambda_i)_t ; i \in I\}$ for all $t \in (a,k]$, then λ_o is a fuzzy subdirect product of $\prod \{\lambda_i ; i \in I\}$.

5. AMALGAMETED PRODUCT:

DEFINITION 5.1: Let G be a group and let λ , μ , γ , δ be fuzzy subgroups of G . δ is said to be a direct product of λ and μ with amalgameted fuzzy subgroup γ denoted by δ = $\lambda \times_{\gamma} \mu$ if

- (i) λ and μ are fuzzy normal,
- (ii) $\emptyset \le \delta(\mathbf{x}) \le \mathbf{a} \iff \emptyset \le (\lambda \mu)(\mathbf{x}) \le \mathbf{a}$
- $\delta(\mathbf{x}) = (\lambda \mu)(\mathbf{x}) \ \forall \ \mathbf{x} \in (\delta)_{\alpha,k} \text{ and } \delta(\mathbf{x}) > k \iff (\lambda \mu)(\mathbf{x}) > k$.
- (iii) $\emptyset \le (\lambda \cap \mu)(x) \le a \iff \emptyset \le \gamma(x) \le a$
- $(\lambda \cap \mu)(\mathbf{x}) = \gamma(\mathbf{x}) \ \forall \ \mathbf{x} \in \gamma_{a,k} \text{ and } (\lambda \cap \mu)(\mathbf{x}) > k \iff \gamma(\mathbf{x}) > k$.
- (iv) $\mathbf{x} \in \lambda_{sa}$, $\mathbf{y} \in \mu_{sa} \Rightarrow \mathbf{x}\mathbf{y} = \mathbf{y}\mathbf{x}$.

THEOREM 5.2: Let G be a finite group . Let δ , μ , λ , γ be fuzzy subgroups of G such that $\emptyset \leq \delta(\mathbf{x}) \leq \mathbf{a} \iff \emptyset \leq (\lambda \mu)(\mathbf{x}) \leq \mathbf{a}$ and $\emptyset \leq (\lambda \cap \mu)(\mathbf{x}) \leq \mathbf{a} \iff \emptyset \leq \gamma(\mathbf{x}) \leq \mathbf{a}$. Then δ is a direct product of λ and μ with amalgameted fuzzy subgroup γ iff δ_t is a direct product of λ_t and μ_t with amalgameted subgroup γ , for all $t \in (\mathbf{a}, \mathbf{k}]$.

THEOREM 5.3: Let G be a finite group . let λ , μ , λ_i , μ_i and γ_i for i=1,2 be fuzzy subgroups of G . Let λ be a direct product of λ_i and λ_2 with amalgameted fuzzy subgroup γ_i and μ be a direct product of μ_i and μ_2 with amalgameted fuzzy subgroup γ_2 . Let there exist an epimorphism f from λ_i to μ_i and g from λ_2 to μ_2 satisfying the property (P): if $\mathbf{x} \in (\gamma_i)_{\mathrm{sa}} = (\lambda_i)_{\mathrm{sa}} \cap (\lambda_2)_{\mathrm{sa}}$ and $\mathbf{f}(\mathbf{x},\mathbf{y}) = \lambda_i(\mathbf{x})$, and $\mathbf{g}(\mathbf{x},\mathbf{y}_i) = \lambda_2(\mathbf{x})$, where $\mathbf{y},\mathbf{y}_i \in \mathbf{G}$, then $\mathbf{y} = \mathbf{y}_i$.

Then there exists an epimorphism from λ to μ .

I express my grateful thanks to Dr. P. Das, Department of Mathematics, Visva- Vharati University for the kind help and guidance which he has rendered in the preparation of this paper. I am also indebted to Dr. M.R. Adhikari, Department of Mathematics, Burdwan University for his kind help and constant encouragement.

REFERENCES

- [1] Pratyayananda Das , Fuzzy subalgebras redefined , To appear in Journal Of Fuzzy Mathematics .
- [2] B.B.Makamba, Direct products and isomorphism of fuzzy subgroups, Inform. Sci. 65, 33 43 (1992).
- [3] A.Rosenfeld , Fuzzy groups , J. Math. Anal. Appl. 35 , 512 517 (1971) .
- [4] H.Sherwood, Product of fuzzy subgroups, Fuzzy Sets and Systems, 11, 79 89 (1983).
- [5] B.W.Wetherilt , Semidirect product of fuzzy subgroups , Fuzzy Sets And Systems, 16 , 237 242 (1985) .