Fuzzy Order-Homomorphisms on Groups (II)

Fang Jin-xuan

Department of Mathematics, Nanjing Normal University

Nanjing, Jiangsu 210097, China

Yan Cong-hua

Depatment of Mathematics, Huaiyin Teacher's College Huaiyin, Jiangsu 223001, China

Abstract: In this paper, the property of initial L-fuzzy topologies determined by a family of fuzzy order-homomorphisms on groups is investigated. As an application of this result, we prove that the product of a family of L-fuzzy topological groups is a L-fuzzy topological group.

Keywords: Fuzzy order-homomorphism on group, initial L-fuzzy topology, L-fuzzy topological groups.

1. Introduction

In [2], we introduced the concept of fuzzy order-homomorphism on groups and studied its structures. In this paper, we continue with investigation of fuzzy order-homomorphism on groups. We give a charactrization of the continuity of fuzzy order-homomorphism on groups, and study initial L-fuzzy topological structures determined by a family of fuzzy order-homomorphisms on groups and the product of a family of L-fuzzy topological groups^[8].

2. Preliminaries

Throughout this paper, L, L_1 , L_2 always denote the fuzzy lattices, i.e. completely distributive lattices with order-reversing involutions $\alpha \mapsto \alpha'$. 0 and 1 are their smallest element and greatest element respectively. L^X denotes the family of all L-fuzzy sets^[*] on X. α_X^* (for short, α^*) denotes an L-fuzzy set which takes the constant value $\alpha \in L$ on X. A non-zero element λ in L is called a molecule^[7] if $\lambda = \alpha \vee \beta$ implies $\lambda = \alpha$ or $\lambda = \beta$, where $\alpha, \beta \in L$. M(L) (or M) will denote the set of all molecules in L and $M^*(L^X)$ (or M^*) will denote the set of all molecules

in L^X . $\tilde{X}(L)$ will denote the set of all L-fuzzy points on X. We assume that for the empty family \emptyset , $\bigvee \emptyset = 0$ and $\bigwedge \emptyset = 1$.

Let X be a group and $A, B \in L^X$. The L-fuzzy sets $A \cdot B$ (simply denoted by AB) and A^{-1} on X are defined by

$$(A \cdot B)(x) = \bigvee_{s \cdot t = x} [A(s) \wedge B(t)], \quad A^{-1}(x) = A(x^{-1}),$$

respectively.

Definition $1^{[2]}$. Let X and Y be two groups. A mapping $F: L_1^X \to L_2^Y$ is called a fuzzy order-homomorphism on groups if it is an order homomorphism^[6] satisfying

$$F(A \cdot B) = F(A) \cdot F(B)$$
, for all $A, B \in L_1^X$

In the following, we always assume that L and L_1 are regular^[6] X and Y are two groups, e denotes the unit element in groups

Theorem $1^{[2]}$. The mapping $F: L_1^X \to L_2^Y$ is a fuzzy order-homomorphism on groups if and only if there exist an ordinary group homomorphism $f: X \to Y$ and a finitely meet-preserving order-homomorphism $\varphi: L_1 \to L_2$ such that F is a bi-induced mapping [4] of f and φ , i.e.,

$$F(A)(y) = \bigvee \{ \varphi(A(x)) \mid f(x) = y \}, \quad \forall A \in L_1^X, \quad \forall y \in Y.$$
 (2.1)

Corollary 1. Let the mapping $f: X \to Y$ be an ordinary group homomorphism. Then the Zadeh's type function^[1] $f: L^X \to L^Y$ induced by f is a fuzzy order-homomorphism on groups.

Remark 1. Theorem 1.1 show that a fuzzy order-homomorphism on groups $F: L_1^X \to L_2^Y$ can be defined by an ordinary group homomorphism $f: X \to Y$ and a finitely meet-preserving order homomorphism $\varphi: L_1 \to L_2$. For convenience from now on we usually use f_{φ} instead of F.

Lemma 1. Let $f_{\varphi}: L_1^X \to L_2^Y$ be a fuzzy order-homomorphism on groups.

- $(1) f_{\varphi}(x_{\lambda}) = [f(x)]_{\varphi(\lambda)}, \forall x_{\lambda} \in \tilde{X}(L_1).$
- (2) $f_{\varphi}^{-1}(B)(x) = \varphi^{-1}(B(f(x))), \forall B \in L_2^Y, \forall x \in X,$ where

$$f_{\varphi}^{-1}(B) = \bigvee \{ A \in L_1^X \mid f_{\varphi}(A) \le B \}$$
 (2.2)

Lemma 2. Let $f_{\varphi}: L_1{}^X \to L_2{}^Y$ be a fuzzy order-homomorphism on groups. Then

- (1) $f_{\varphi}^{-1}(f(x) \cdot B) = x \cdot f_{\varphi}^{-1}(B),$ $f_{\varphi}^{-1}(B \cdot f(x)) = f_{\varphi}^{-1}(B) \cdot x, \quad \forall x \in X, \quad \forall B \in L_{2}^{Y}.$
- (2) $f_{\varphi}^{-1}(A) \cdot f_{\varphi}^{-1}(B) \subset f_{\varphi}^{-1}(AB), \forall A, B \in L_2^Y$

Definition 2. A L-fuzzy topology on a set X is a family δ of L-fuzzy subsets of X which satisfies the following conditions:

- (1) $\alpha^* \in \delta$ for all $\alpha \in L$;
- (2) δ is closed under arbitrary unions;
- (3) δ is closed under finit intersections.

The pair (L^X, δ) (or (X, δ) , for simplicity) is called L-fuzzy topological space and the members of δ are called open L-fuzzy sets. When $A \in \delta, A'$ is called a closed L-fuzzy set.

For the notions of R-neighborhood, R-neighborhood base of a molecule x_{λ} in (L^X, δ) and continuous order homomorphism can be found in [7]. Let (L^X, δ_1) and (L^Y, δ_2) be two L-fuzzy topological spaces. The mapping $f: X \to Y$ is said to be continuous, if the Zadeh's type function^[5] of it is a continuous order homomorphism from (L^X, δ_1) into (L^Y, δ_2) .

Definition $3^{[8]}$. Let X be a group and δ be a L-fuzzy topology on X. The pair (L^X, δ) (or (X, δ)) is said to be a L-fuzzy topological group iff the following conditions are satisfied:

- (a) The mapping $g:(X,\delta)\times(X,\delta)\to(X,\delta),\ (x,y)\mapsto xy$ is continuous;
- (b) The mapping $h:(X,\delta)\to (X,\delta),\ x\mapsto x^{-1}$ is continuous.

Lemma 3.3 in [8] given some of the propertis of R-neighborhood base of e_{λ} in L-fuzzy topological group. It must be pointed out that the conclusion (6) of Lemma 3.3 should be modified as "for all $\mu \in L$, if $\lambda \not\leq \mu$, then there exists a $V \in \eta_{\lambda}$ such that $\mu^* \leq V$ ". By Lemma 3.3 and Theorem 3.1 in [8], we obtain the following:

Theorem 2 Let (L^X, δ) be a L-fuzzy topological group. If $\eta_{\lambda} = \{U\}$ is a R-neighborhood base of e_{λ} for each $\lambda \in M(L)$, then we have

- (1) if $U \in \eta_{\lambda}$, then $e_{\lambda} \notin U$;
- (2) if $U, V \in \eta_{\lambda}$, then there exists a $W \in \eta_{\lambda}$ such that $U \cup V \subset W$;
- (3) for each $U \in \eta_{\lambda}$, there exists a $V \in \eta_{\lambda}$ such that $V' \cdot V' \subset U'$;
- (4) for each $U \in \eta_{\lambda}$, there exists a $V \in \eta_{\lambda}$ such that $U \subset V^{-1}$;
- (5) for each $U \in \eta_{\lambda}$ and each $x \in X$, there exists a $V \in \eta_{\lambda}$ such that $x^{-1}V'x \subset U'$;
- (6) for such $U \in \eta_{\lambda}$, if $x_{\alpha} \notin U(\alpha \in M)$, then there exists a $V \in \eta_{\alpha}$ such that $xV' \subset U'$;

(7) for all $\mu \in L$, if $\lambda \not\leq \mu$ then there exists a $V \in \eta_{\lambda}$ such that $\mu^* \leq V$.

Conversely, let X be a group, if for each $\lambda \in M(L)$ there is a family $\eta_{\lambda} = \{U\}$ of L-fuzzy sets on X which satisfies the above conditions (1) - (7), then there is a L-fuzzy topology δ on X such that (L^X, δ) is a L-fuzzy topological group and the η_{λ} is a R-neighborhood base of e_{λ} in (L^X, δ) .

3. Main results

Theorem 3. Let (L_1^X, δ_1) and (L_2^Y, δ_2) be two L-fuzzy topological groups, and let $f_{\varphi}: L_1^X \to L_2^Y$ be a fuzzy order-homomorphism on groups. Then f_{φ} is continuous iff f_{φ} is continuous at e_{λ} for each $\lambda \in M(L)$.

Proof. The necessity is evident (See [7, Theorem 2.6.3]).

Sufficiency. By [7, Theorem 2.6.3], it is enough to show that for each $x_{\lambda} \in M^{\bullet}(L_{1}^{X})$, f_{φ} is continuous at x_{λ} .

Let A be a R-neighborhood of $[f(x)]_{\varphi(\lambda)}$. Since (L_2^Y, δ_2) be a L-fuzzy topological group, by [8, Lemma 3.1], there exists a $P \in \eta_{\varphi(\lambda)}^{(2)}$ (where $\eta_{\varphi(\lambda)}^{(2)}$ is a R-neighborhood base of $e_{\varphi(\lambda)}$ in (L_2^Y, δ_2)) such that $A \subset f(x)P$. By the continuity of f_{φ} at e_{λ} , we know that $(f_{\varphi})^{-1}(P)$ is a R-neighborhood of e_{λ} . From Lemma 2 it follows that

$$f_{\varphi}^{-1}(A) \subset f_{\varphi}^{-1}(f(x)P) = xf_{\varphi}^{-1}(P).$$

Thus $f_{\varphi}^{-1}(A)$ is a R-neighborhood of x_{λ} . Therefore by [7, Definition 2.6.2] f_{φ} is continuous at x_{λ} .

Theorem 4. Let X be a group, $\{(L_2^{X_\alpha}, \delta_\alpha) \mid \alpha \in \Gamma\}$ a family of L-fuzzy topological group, and let the mapping $(f_\alpha)_{\varphi_\alpha} : L_1^X \to L_2^{X_\alpha}$ be a fuzzy order-homomorphism on groups for each $\alpha \in \Gamma$. By δ we denote the weakest L-fuzzy topology on X with respect to which each of the mappings $(f_\alpha)_{\varphi_\alpha} (\alpha \in \Gamma)$ is continuous. If each φ_α $(\alpha \in \Gamma)$ is a injection, then (L_1^X, δ) is a L-fuzzy topological group. δ is called the L-initial fuzzy topology determined by $\{(f_\alpha)_{\varphi_\alpha} \mid \alpha \in \Gamma\}$.

Proof. For each $\lambda \in M(L_1)$, we define a family η_{λ} of L-fuzzy sets on X as follows:

$$\eta_{\lambda} = \{ \bigcup_{i=1}^{n} (f_{\alpha_i})_{\varphi_{\alpha_i}}^{-1}(P_{\alpha_i}) \mid P_{\alpha_i} \in \tilde{\eta}_{\varphi_{\alpha_i}(\lambda)}, \ i = 1, 2, \dots, n; \ n \in \mathbb{N} \},$$
(3.1)

where $\tilde{\eta}_{\varphi_{\alpha_i}(\lambda)}$ is a R-neighborhood base of $e_{\varphi_{\alpha_i}(\lambda)}$ in $(L_2^{X_{\alpha_i}}, \delta_{\alpha_i})$. Using Lemma 1 and Lemma 2, we can show that η_{λ} satisfies the conditions (1) - (7) in Theorem 2. Thus, by Theorem 2 there is a L-fuzzy topology δ on X such that (L_1^X, δ) is a L-fuzzy topological group, and η_{λ} is a R-neighborhood base of e_{λ} in (L_1^X, δ) . From

the definition of η_{λ} (See (3.1)), it is easy to know that δ is the weakest L-fuzzy topology on X with respect to which each of the mappings $(f_{\alpha})_{\varphi_{\alpha}}$ ($\alpha \in \Gamma$) is continuous.

Corollary 2. Let $\{(L^{X_t}, \delta_t)\}_{t \in T}$ be a family of L-fuzzy topological groups, and let $X = \prod_{t \in T} X_t$ be the direct product of the algebraic groups X_t $(t \in T)$ and δ be the product of L-fuzzy topologies $\{\delta_t\}_{t \in T}$. Then (L^X, δ) is a L-fuzzy topological group, and it is called the product of L-fuzzy topological groups (L^{X_t}, δ_t) $(t \in T)$.

Proof. Let δ be the weakest L-fuzzy topology on X for which each projection $\tilde{P}_t: L^X \to L^{X_t}$ is continuous, where \tilde{P}_t is the Zadeh's type function induced by the projective mapping $P_t: X \to X_t$. By [7, Theorem 2.8.10], we know that δ is the product of L-fuzzy topologies $\{\delta_t\}_{t\in T}$. Since the projection $P_t: X \to X_t$ is an ordinary group homomorphism, by Corollary 1 the Zadeh's type function $\tilde{P}_t: L^X \to L^{X_t}$ is a fuzzy order homomorphism on groups. Hence from Theorem 4 (L^X, δ) is a L-fuzzy topological group.

References

- [1] M. A. Erceg, Function, equivalence relations, quotient space and subsets in fuzzy set theory, Fuzzy Sets and Systems, 3(1980), 75-92.
- [2] Fang Jin-xuan and Yan Cong-hua, Fuzzy oder-homomorphism on groups, BUSEFAL, 62(1995), 71-76.
- [3] J. A. Goguen, L-fuzzy sets, J. Math. Anal. appl., 18 (1967), 145-174.
- [4] He Ming, Bi-induced mapping on L-fuzzy sets, Kexue Tongbao, 31(1986), 475 (in Chinese).
- [5] Liu Ying-ming, Structures of fuzzy order homomorphisms, Fuzzy Sets and Systems, 21(1987), 43-51.
- [6] Wang Guo-jun, Order-homomorphism of Fuzzes, Fuzzy Sets and Systems, 12(1984), 281-288.
- [7] Wang Guo-jun, Theory of L-fuzzy topological spaces, Shanxi Normal University Publishing House, Shanxi, 1988 (in Chinese).
- [8] Yu Chun-hai and Ma Ji-liang, L-fuzzy topological groups, Fuzzy Sets and Systems, 44(1991), 83-91.