SOME RESULTS ON UNION OF FUZZY SUBGROUPS

Wang Baoming, Li Xiaozhong, Zhang Qingde

Department of Mathematics, Liaocheng Teachers College

Liaocheng, Shandong 252059, P.R. China

Abstract

This paper has answered the question whether a true fuzzy subgroup can be represented union of two mutually unequivalent true fuzzy subgroups proposed by [1]. Some results are obtained.

Keywords: Fuzzy subgroups; union; true fuzzy subgroups

1. Instruction

It is well-known in the ordinary group theory that any group can not be represented union of two true subgroups. The fact was generalized to fuzzy group by Rosenfeld[2], that is, any group can not be represented union of two true fuzzy subgroups where the group means characteristic function of a group G. Dixit, KUMAR and AJMAL[1] gave their further study for this problem. The question whether a true fuzzy subgroup θ of G can be represented union of two mutually exclusive true fuzzy subgroups was put forward and given a complete answer. They stated that the answer depended on the image set $I_m \theta$ of θ where $I_m \theta = \{\theta(x) \mid x \in G\}$. When $I_m \theta$ includes at least two nonzero elements, θ can be always represented union of two mutually exclusive true fuzzy subgroups. This conclusion is not identical with correspondent one in ordinary group theory. But when $|I_m \theta|=1$ or $I_m \theta=\{0,t\}$, $0 < t \le 1$, we can obtain identical conclusion with ordinary group theory, that θ can not be represented union of two mutually exclusive true fuzzy subgroups.

This paper will answer whether a true fuzzy subgroup can be represented union of two mutually unequivalent true fuzzy subgroups which is proposed by Dixit et al[1](in the need of mutually exclusive true fuzzy subgroups certainly—authors of this paper).

2. Preliminaries

Definition 1. Let θ be a fuzzy subgroup of a group G. If $|I_m \theta| \neq 1$ (that is, θ is not constant), then θ is called a true fuzzy subgroup, otherwise a untrue fuzzy subgroup.

Definition 2. Two fuzzy subgroups μ and η of a group G are called equivalent if their level groups are completely the same, that is

$$\{ \mu_{\lambda} \mid \lambda \in [0,1] \} = \{ \eta_{\lambda} \mid \lambda \in [0,1] \}.$$

Otherwise, μ and η are not equivalent(or unequivalent).

Lemma 1. Let θ be a fuzzy subset of a group G. Then θ is a fuzzy subgroup if and only if every level subset $\theta \approx 0$ of θ is a subgroup of G.

Lemma 2. Let θ be a fuzzy subgroup of G and $t_1, t_2 \in I_m \theta, t_1 > t_2$. Then fuzzy subset μ of G defined as follows

$$\mu(\mathbf{x}) = \begin{cases} \mathbf{t_2} & \mathbf{t_1} > \theta \ge \mathbf{t_2} \\ \theta(\mathbf{x}) & \text{otherwise} \end{cases}$$

is also a fuzzy subgroup of G.

Proof: Take $\lambda \in [0,1]$. When $\lambda > t_1$ or $\lambda \leq t_2$, $\mu_{\lambda} = \theta_{\lambda}$ obviously. When $t_1 > \lambda > t_2$, since

 $\mathbf{x} \in \mu_{\lambda} <=> \mu(\mathbf{x}) \geqslant \lambda > \mathbf{t_2} <=> \mu(\mathbf{x}) = \theta(\mathbf{x}) \geqslant \mathbf{t_1} <=> \mathbf{x} \in \theta_{\bullet_1}$ therefore $\mu_{\lambda} = \theta_{\bullet_1}$

In a word, every level cut set of μ is a certain level cut set of θ . Since θ is a fuzzy subgroup, from Lemma 1, μ is also a fuzzy subgroup.

3. Union of fuzzy subgroup

We discuss above question in several conditions.

- (1) When $|I_m \theta|=1$ (Dixit calls θ not a true fuzzy subgroup) or $I_m \theta = \{0, t\}$, t>0, from [1], we know that θ can not be decomposed union of two mutually exclusive true fuzzy subgroups. Hence, certainly, θ can not be decomposed union of two unequivalent true subgroups.
- (2) when $I_{m} \theta = \{t_1, t_2\}, t_1 > t_2 > 0$, θ have only two level subgroups θ_{\bullet_1} , θ_{\bullet_2} (=G) and $\theta_{\bullet_1} \subseteq \theta_{\bullet_2}$.

If $\theta_{\bullet,i}$ has true subgroup H, we define fuzzy subgroups μ and η as follows

$$\mu(\mathbf{x}) = \begin{cases} \mathbf{t_1} & \mathbf{x} \in \mathbf{H} \\ \mathbf{t_2} & \mathbf{x} \in \mathbf{H} \end{cases} \qquad \eta(\mathbf{x}) = \begin{cases} \mathbf{t_1} & \mathbf{x} \in \theta_{\mathbf{t_1}} \\ \mathbf{t_2} - \varepsilon & \theta(\mathbf{x}) = \mathbf{t_2} \end{cases}$$

where $0 < \varepsilon < t_2$. From Lemma 2, μ and η are fuzzy subgrouups of G and $\theta = \mu \vee \eta$ where μ and η are neither equivalent nor mutually inclusive.

If G has true subgroup K such that $\theta_{\bullet_i} \subseteq K \subseteq G$, then μ and η defined as follows

$$\mu(\mathbf{x}) = \begin{cases} \mathbf{t_1} & \mathbf{x} \in \theta_{\mathbf{t_1}} \\ \mathbf{t_2} & \mathbf{x} \in \mathbf{K} \text{ but } \mathbf{x} \notin \theta_{\mathbf{t}} \\ \mathbf{t_2} - \varepsilon & \mathbf{x} \in \theta_{\mathbf{t_2}} \text{ but } \mathbf{x} \notin \mathbf{K} \end{cases} \qquad \eta(\mathbf{x}) = \begin{cases} \mathbf{t_1} - \delta & \theta(\mathbf{x}) = \mathbf{t_1} \\ \mathbf{t_2} & \theta(\mathbf{x}) = \mathbf{t_2} \end{cases}$$

are two neither equivalent nor mutually inclusive true fuzzy subgroups and $\theta = \mu \vee \eta$.

Conversely, if θ can be decomposed union of two mutually unequivalent true fuzzy subgroups, then there exists at least a level subgroup denoted by μ_* among level subgroups of μ and η which is not θ_{*_1} and θ_{*_2}

If $\mu_* \cap \theta_{\bullet_1} = \theta_{\bullet_2}$, then $\theta_{\bullet_1} \subseteq \mu_*$, that is, G has subgroup $K = \mu_*$ such that $\theta_{\bullet_1} \subseteq K \subseteq \theta_{\bullet_2}$. If $\theta_{\bullet_1} \cap \mu_* \subseteq \theta_{\bullet_1}$ then $H = \theta_{\bullet_1} \cap \mu_*$ is a true subgroup of θ_{\bullet_1} .

Summing up, we have following theorem.

Theorem 1. Let θ be a true fuzzy subgroup of a group G and $I_{m} \theta = \{t_1, t_2\}, t_1 > t_2 > 0$. Then θ can be represented union of two

mutually unequivalent true fuzzy subgroups if and only if G has true subgroup H such that $H \subseteq \theta_*$ or $\theta_* \subseteq H$.

$$(3) \mid I_{\mathbf{m}} \theta \mid \geqslant 3.$$

1°
$$I_m \theta = \{t_1, t_2, t_3\}, t_1 > t_2 > t_3$$
. Let

$$\mu(\mathbf{x}) = \begin{cases} \mathbf{t_2} & \theta(\mathbf{x}) \geqslant \mathbf{t_2} \\ \mathbf{t_3} & \theta(\mathbf{x}) = \mathbf{t_3} \end{cases} \qquad \eta(\mathbf{x}) = \begin{cases} \mathbf{t_1} & \theta(\mathbf{x}) = \mathbf{t_1} \\ \mathbf{t_3} & \mathbf{t_1} > \theta(\mathbf{x}) \geqslant \mathbf{t_3} \end{cases}$$

From Lemma 2, we know that μ and η are true fuzzy subgroups which are neither mutually inclusive nor equivalent obviously and $\theta = \mu \vee \eta$.

 2° | $I_m \theta$ | \geq 4 (which include | $I_m \theta$ |=+ ∞). Take t_1, t_2, t_3 and $t_4 \in I_m \theta$ such that $t_1 > t_2 > t_3 > t_4$. Let

$$\mu(\mathbf{x}) = \begin{cases} \mathbf{t_s} & \mathbf{t_1} > \theta(\mathbf{x}) \geqslant \mathbf{t_s} \\ \theta(\mathbf{x}) & \text{otherwise} \end{cases} \qquad \eta(\mathbf{x}) = \begin{cases} \mathbf{t_4} & \mathbf{t_2} > \theta(\mathbf{x}) \geqslant \mathbf{t_4} \\ \theta(\mathbf{x}) & \text{otherwise} \end{cases}$$

From Lemma 2, μ and η are true fuzzy subgroups which are neither mutually inclusive nor equivalent and $\theta = \mu \vee \eta$. Therefore, we obtain following theorem.

Theorem 2. Let θ be true fuzzy subgroup of a group G. If $|I_m \theta| \ge 3$, then θ can be represented union of two mutually unequivalent true fuzzy subgroups.

References

- [1] V.N. Dixit, Rajosh KUMAR and Nascem AJMAL, Level subgroups and union of fuzzy subgroups, Fuzzy sets and Systems, 37(1990) 359-371.
- [2] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35(1971) 512-571.
- [3] Luo Chengzhong, Nest sets and fuzzy subgroups, Journal of Beijing Normal University, 4(1986) 1-9.
- [4] Luo Chengzhong, An introduction to fuzzy sets, Beijing Normal University Press, 1989.
- [5] Zhang Qingde, Geneated fuzzy subgroups and generating system of conjugate fuzzy subgroups, BUSEFAL, 62(1992)82-88.
- [6] L.A. Zadeh, Fuzzy sets, Inform. and Control, 8(1965) 338-353.